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Preface

The purpose of this research was to design and integrate
a visual servo control scheme for a PUMA 560 robot arm that
derives its position feedback information from a Machine
Intelligence Corporation (MIC) vision system. The vision
system’'s television camera was mounted to the PUMA’s third
Joint. The integrated vision-robot system (VRS) successfully
employed closed loop, static and dynamic, visual servo
control techniques for demonstrating the feasibility of using
a VRS to ground refuel an aircraft.

I wish to express my deepest gratitude to a number of
people who helped me complete this exciting research project.
In particular Dr. Matthew Kabrisky, my advisor, and Dr.
Michael Leahy both of whom provided valuable suggestions and
recommendations. Dr. Leahy’s expertise in robot control and
the PUMA 560 was invaluable. This research effort would not
have been a "success” without his help and assistance. I am
forever grateful to Dr. Kabrisky who was always excited to
come "underground” to view my progress ("YOU HAVE 20 SECONDS
TO DROP YOUR WEAPON", to quote the well-renowned movie
production "RoboCop”). Dr. "K" provided unmeasurable
guidance and direction, especially in my write-up. I would
also like to express by deepest thanks to Mr. Bob Ewing
(THANKS BOB) for his encouragement and exéitement, especially
at the start of this project. Thanks also go out to Lt Col

Zdzislaw H. Lewantowicz for his efforts in reviewing my work.
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Thanks also go out to Capt Dewayne Davis from the Flight

Dynamics Laboratory and Mr.

Ed Horan from Unimation.

Capt

Davis provided good information on current robotic issues

facing the Air Force.

without Ed Horan and "Ma 3ell",

A special thanks go to Mr. Horan, for

I'd still have two pieces of

equipment that "didn’t want to talk to each other"

I also owe my most sincere appreciation to two fellow

students and friends,

Lashlee.

highlight in my life - THANKS GUYS.

Finally,

blessed,

and Krista; and God.

last - but by far not least,

loving wife, Coclleen;

my wonderful children, Casey

Captains Peter Van Wirt and Robert

I thank my

are inspirational and they make our relationship a special

gift.

Her ability to make me work and have fun are uncanny

({Thanks for all the fun on the golf course).
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Abstract

The threats of dangerous environments and projected cuts
in military personnel, combined with advances in robotics and
sensors, have caught the attention of the United States Air
Force. The Flight Dynamics Laboratory at Wright-Patterson
Air Force Base has been conducting research into concepts for
performing aircraft ground refueling using robotic systems.

The main sensor for a robotic refueler application is
vision. Visual information received from a TV camera mounted
to the refueling boom, provides the feedback data necessary
for employing visual servo control techniques. This feedback
data, the refueling port’'s centroid and depth, is used to
visually guide the robot refueler to the refueling port.

This research effort designs and integrates a visual
servo control scheme for a PUMA 560 robot arm that derives
its control information from a Machine Intelligence

Corporation vision system._, The vision system’s TV camera is

mounted to the PUMA's third \joint. The integrated vision-

robot system (VRS) uses closed\loop, static and dynamic,
visual servo control techniques td demonstrate the
feasibility of ground refueling.

The results successfully demonstrate the VRS’s ability

to search for the receptacle, and use visual servo control

techniques to guide the VRS to it.
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IMPLEMENTATION OF A VISUAL SERVOING SYSTEM

FOR EVALUATION OF ROBOTIC REFUELING APPLICATIONS

I. Introduction

General Issue

Advances in robotic technology have helped to
revolutionize industry worldwide. The major reason for this
revolution lies in a robot’s ability to repeat a
preprogrammed sequence of tasks. Robots have freed human
beings from boring, repetitive tasks. Their strength and
endurance allows safe, accurate operations, especially in
hazardous conditions which exist in various industrial and
military situations. A robot required to operate effectively
in changing, hazardous environments must be equipped with
sensors (vision, acoustic, etc.) and artificial intelligence
(AT). AJ algorithms process data received from the sensors
enabling real-time decisions to be made affecting the
preprogrammed operation of the robot. A robot equipped with
sensors and AI is considered an intelligent
robot (8:229-230),

One potentially dangerous environment for personnel

exists in a chemical/biological (CB) contaminated area. A CB




contaminated environment on the runway of a military
installation is possible during a hostile situation.
Exposure to this environment can result in serious injury or
death (3).

Cne solution to the problem of exposing personnel to a
CB environment is to have an intelligent robotic refueler
accomplish the task of aircraft ground refueling. A brief,
simplified scenario of a possible refueling operation
follows:

1) The aircraft parks.

2) The robotic refueler pulls up to the

aircraft. This could be accomplished

autonomously or by using a human driver.

3) A refueling boom swings up and over the
aircraft near the air refueling port.

4) A vision system finds the refueling port and
vision servo control techniques guide the
robot boom into the port.

5) Once the aircraft has been refueled, the boom
is removed from the port and stowed.

6) The robotic refueler pulls away from the
aircraft.

7) The aircraft departs.
An artist’s conception of a robotic refueler with a human
driver refueling an aircraft through the air refueling port

is shown in Figure 1.
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Robotic Refueler 43:53)

Figure 1.




Background

The threats of dangerous environments and projected cuts
in military personnel have raised concern in several
operational aspects of the United States Air Force (USAF).
The Flight Dynamics Laboratory at Wright Patterson Air Force
Base has been conducting research into concepts for
performing aircraft ground refueling using robotic systems.
To enable a robotic refueler to operate autonomously,
intelligence must be integrated into the system. The main
sensor for the application of a robot retfueler is vision.
Visual information received from a television camera provides
the data necessary for vision servo control. Vision servo
control provides feedback information on the relative
position of the robot to a target. This feedback data is
used to guide the robot to the desired target (12:107-116).

Safety requirements in current ground refueling
procedures require a minimum of three military members to
refuel an aircraft. With predicted cuts in military
manpower, any safe refueling method which could reduce
personnel helps solve the manning problem. It is also
desirable to have a minimum number of human beings exposed in

a hostile environment during the refueling.




The Flight Dynamics Laboratory’s initial research
determined the air refueling port to be the best place to
refuel an aircraft using a robotic refueler. The air
refueling port has many advantages:

1) It 1s standard on all Air Force fighter

aircraft.

2) It is compliant within a 30 degree cone of
insertion.

3) It is a slipway for teleoperated insertion of

a boom nozzle.

4) It has connections for audio or other data
transfer information.

Using the air refueling port eliminates the need for robot
end-effectors to simulate complicated human dexterous
manipulations required by current ground refueling
procedures, such as opening and closing an access panel,
removing and replacing the fuel cap, and twisting on and off

the fuel nozzle (3).

Statement of Problem

The purpose of this research is to design and integrate
a visual servo control scheme for a PUMA 560 robot arm that
derives its control information from a Machine Intelligence
Corporation (MIC) vision system. The aim of this vision-
robot system (VRS) is to demonstrate the ability of a ground
refueling robot to acquire the refueling port of an aircraft
in real-time. Guidance of the refueling boom into the port
is based on visual feedback received from a television camera
rigidly attached to the robot arm.

5




Scope

This research concentrates on visual servoing. The MIC_
vigsion system takes a picture of a well defined scene and
forms a video grey-scale binary image which is then processed
to determine the position and orientation of a target in the
scene. Binary images are needed for the fast computer
computations required during efficient, real-time visual
servo control.

This investigation focuses on three separate areas to
solve the problem of ground refueling an aircraft with a
visually equipped robot:

1) Teach the vision system to recognize the
refueling port from any viewing angle.

2) Design a visual servo controller for the
real-time guidance of the robot refueler to
the air refueling port.

3) Develop a scanning algorithm that moves the
robot arm in a pre-programmed pattern so

its vision system can acquire the refueling
port.

Assumptions

Since the cost of developing a full-scale robot refueler
is not practical for this project, a simple simulation of the
robot refueler will demonstrate the theory developed during
this research. To simulate video acquisition of the
refueling port, an artificial, well-defined, high contrast
target-background scene was constructed; the target, a white
ball, represents the refueling port and a black background

represents the surrounding area. The vision-robot system




(VRS) will scan an area until the vision system acquires the
target. Once located, the visual servo controller will guide
the VRS to the target.

Computer processing time is of the utmost importance for
effective, real-time visual servo control. Determining the
location and orientation of a ball requires the least amount
of computer processing in the MIC image processor, because
the two dimensional image of a ball is a circle from any
viewing angle. The high scene contrast assists in providing
the fast processing time required during real-time control
operation. White against black also eliminates the chance of
shadows distorting the shape of the ball. A lack of shadows
removes the requirement for any special lighting normally
found in a grey-scale image system.

Another reason for using a ball as the target is the
camera’s fixed focus lens. Even though the ball becomes
blurry as the camera approaches the target, the ball’s
digital image will remain circular, thus allowing simple
target identification.

Additionally, it is assumed that the path between the
ball and the VRS has no obstacles. Therefore, obstacle
avoidance techniques will not be researched or employed.

Finally, it is noted that an added capability of the MIC

vigsion system enables it to determine the centroid and




orientation of any target placed in its camera’s field-of-
view (FOV). This enables the vision system to provide some
information about a target even though it may not be able to
identify the target. The vision system’s television camera
will be mounted rigidly on the third joint of the PUMA 560
robot arm. Specifications concerning the PUMA 560 and the

MIC vision system are in Appendix A.

General Approach

This research effort will be separated into two tasks
based on two different types of visual servo control schemes.
The first task implements closed-loop, static look-and-move
visual servo control techniques to simulate the acquisition
and guidance of the robot refueler boom into the refueling
port. This task verifies the interface and correct operation
of the PUMA 560 and the MIC vision system. It also develops
a system that searches for a target, and once acquired,
implements static visual servo control techniques to guide
the VRS towards the target. The second task implements
ciosed-loop, dynamic look-and-move visual servo control
techniques to simulate the guidance of the robot refueler

boom into the refueling port.
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Presentation

This thesis is composed of five chapters. Chapter II
summarizes current research in the field of visual servo
control. Chapter III presents the system setup and research
methodology used in completing this research effort. Chapter
IV discusses the results. Finally, Chapter V presents the

conclusions and recommendations for further work.
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II. Review of the Literature

Introduction
The use of robots, especially in industrial assembly,
’ has grown at a remarkable rate during the last two decades.
The term "robot" was coined by the Czech writer Karel Capek

and means forced labor. Robots do the work of humans

although they do not look or act like humans (8:2-3). The
major advantage of robots lies in their ability to repeat a
preprogrammed sequence of tasks in a constant environment
with great accuracy. The major disadvantage of robots lies
in their inability to sense and respond to a changing
environment (8:229).

The integration of intelligence into a robot is needed
for it to effectively operate in a changing environment.
Intelligence can be installed in a robot by equipping it with
appropriate sensors and artificial intelligence (AI). Figure
2 shows a block diagram of a possible intelligent robot. Data
from the sensors provide the necessary information required
by AI algorithms to enable real-time decisions that may
affect the preprogrammed operation of the robot (8:229-230).

This chapter briefly introduces the various robotic
sensors and control schemes currently in use or in
development. A summary of the various applications of robot
manipulator systems integrated with visual sensors and visual

servo control schemes will also be presented.
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Figure 2. Block Diagram of an Intelligent Robot System
(8:230)

Sensors

Sensor development and integration has been an area of
active research. "The interaction of robots with sensors has
always been an important goal in the development of robotic
systems. Such sensor-based systems would have increased

functional capabilities as well as flexibility in the

execution of tasks"” (12:107). Robotic sensors are classified
as either contact or noncontact. Contact sensors include
tactile and force-torque sensors. Noncontact sensors

include proximity, acoustic, range, and visual sensors (8:230).
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The visual sensor of interest to this research uses an
image processor to digitize a scene viewed through a
television (TV) camera. The vision system provides the
position and orientation of a target. This information is
fed back to the robot controller. The controller directs the
robot to the target, enabling the robot to complete its

programmed tasks.

Control

The two basic types of control schemes employed, when
using sensor data for robot control, are static sensing and
dynamic sensing. The static sensing method maintains the
robot in a stationary position while sensing takes place.
Most control systems which implement this method use open
loop control. Once all processing of sensor data has been
completed, the robot accomplishes its required tasks without
any further information received from the sensing device. By
contrast, the dynamic method controls real-time robot motion
based on informational updates acquired from the sensor in a
closed loop configuration (8:231).

Most modern vision systems employ a static closed-loop
mode of operation. The vision system takes a target’s
picture and feedbacks its position with respect to the
robot’s position. The difference between' the two positions
is considered a sensed error. The sensed error actuates the
necessary robot movements required to eliminate the error.
The vision system continually monitors the error between the

12




robot’s position relative to the target’s after each robot

motion until the error no longer exists (8:231).

Visual Servo Control

A limited amount of research has been done in the
development of control structures for visual servoing. This
section discusses current techniques and approaches used in
visual servo control,.

"The function of machine vision in servoing is to
determine the spatial relationship that exists between the
camera, tool, and the workpiece" (1:943).

Visual servo robot control systems provide feedback

on the relative end-effector position of a robot.

They offer an interactive positioning mechanism

which depends upon extraction and interpretation of

visual information from the environment (12:107).

The accuracy of visual feedback depends on the distance from
the camera to the end-effector and the distortion of the
image plane due to the camera lens (1:944-915).

Visual servo control systems are characterized by either
a feedback representation or a joint control mode. Image-
hased and position-based visual feedback systems comprise the
feedback representation. Image-based visual feedback cantrol
parameters are based on an image's features, where as
position-based visual feedback control parameters are based
on an object’s geometry, position and orientation (12:108).

The two basic joint control modes are closed-loop and
open-loop. "The ’look-and-move' structures utilize inner

closed-loop joint control. The 'visual-tracking’ structures

13




have no closed-loop joint control and rely only on sensory
feedback to drive the manipulator” (12:108).

Practical, real-time operation of sensor servo systems
has yet to be achieved. Sanderson and Weiss believe:

A number of factors have delayed the practical

development of sensor-based servo systems. Robot

positioning systems and robot control systems are

difficult to analyze and design in themselves, and

there are a large number of practical applications

of non-sensing robots in highly structured

industrial and other environments. Sensing

systems, particularly vision, are often slow

relative to manipulator dynamics, and practical

applications or machine vision are currently also

limited to highly constrained situations. The

analytical complexity of both manipulator control

and sensory data interpretation make general

formulation of the sensor-based control problem

challenging (12:107).
In visual control systems, the video camera provides the
required image information for determining camera position
relative tc object position. Computer processing times
(including interprocessor communications) under 1/10 of a
second (14:214) are required during scene analysis to achieve
real-time visual servoing for some typical engineering
applications. The computer processing includes image
preprocessing, feature extraction, and interpretation. The
computer processing adds unwanted noise and time delays to
the system which, when taken into account, adds complexity to
the system’s operation.

A majority of the control work using vision systems has

been with the open loop, static look-and-move type discussed

earlier. 1In these applications the camera is mounted

14




separately from the robot. The vision system takes a
picture, processes the scene information, and outputs the
object’s position and orientation to the robot control system
so the robot manipulator can accomplish its predetermined
task. This technique suffers since the above operations do
not occur in the real-time requirement for visual servo

control.

Research

Numerous authors have researched and/or developed a
variety of vision-robot systems using some form of visual
servoing. There are two basic methods used in vision
servoing. One involved the camera mounted over the workspace
while the other has the camera mounted directly on the robot
manipulator. The first method usually works on systems
concerned with the servoing of a robot to grasp an
unorientated object. Ward et al., developed CONSIGHT: an
industrial vision-based robot system which uses a linear
array camera (mounted overhead) and structured light. As an
object passes below the camera on a moving belt, CONSIGHT
produces a two-dimensional (2-D) image of the object in order
to determine its position and orientation with respect to the
robot {(15:195-211). This system, as well as others using
structured light, only work effectively in controlled,
relatively stable environments like those found in many

industrial applications.

15




Another example using a camera mounted separately from
the robot arm was done by Palm et al. They have demonstrated
how a visual system comprised of a =ingle camera and two
light sources used visual servoing techniques to enable the
accurate robotic assembly of pins into an electrical
connector. The vision algorithm relied upon the relative
distance between the pin's actual position and its desired
position (10:221-236).

The second method used in visual servoing has the camera
mounted on the robot manipulator. "This technique is
desirable for accuracy due to the close proximity of the
camera to the end-effector and the workpiece” (1:943).
Research in this area involves the extraction of 3-D
information from a 2-D image using triangulation, structured
lighting , and perspective cue depth measurement (1:943).
This method has been proven successful by Hill and Park, and
VanderBrug (6;14). VanderBrug et al. developed a system
utilizing a miniature solid state camera and a strobographic
light source mounted directly onto the robot manipulator.
The light source flashes a plane of light onto an object in
the camera’s field of view. When the plane of light strikes
the object, line segment images are viewed by the camera.
Computer algorithms utilizing triangulation principles
interpret the image segments to provide the range and

orientation of the object (14:213-231).
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Bamba et al. incorporated a system based on the optical
pattern projection method used for recognition of 3-D
objects. Their system uses a small visual sensor which has a
photo sensitive position detector and a light emitting diode
(LED) for its main components. This system can be used for
path correction during arc-welding. Light emitted from the
LED is projected onto the surface of the object to be welded
and deflected back to the position detector, providing 3-D
information about the object (2:169-177).

The systems mentioned above all suffer from the same
problem; the requirement for some form of structured light
and controlled environments. These systems would not be
practical for a robotic ground refueler which would have to
operate in a changing environment. The next three
developments more closing relate to the scope of this
research effort.

An example using a small, solid state camera attached to

a robot end-effector was demonstrated by Hill and Park. This
system can operate by either conventional lighting or
structured lighting, therefore, making it more versatile.
The image processor converts a scene into btinary images to
achieve fast and reliable processing. Visual feedback
enables the robot to guide the manipulator to a desired
target (6:233-246).

Harrell et al., developed a visual servo system for a

three degree-of-freedom harvest robot to pick fruit from a

17
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tree. The system received its visual feedback information
from a CCD camera mounted in the robot’s third prismatic
joint. "Simple proportional gain control laws utilized this
vision feedback to independently servo the two revolute
Jjoints” (5:537) to the desired piece of fruit. The system
used a strobe light to determine the distance to the fruit.
The system successfully tracked fruit motions during a
harvest cycle (5:537-545).

A system that did not need to compute the coordinate
relationship between the robot end-effector and the camera
was developed by Kim et al. The system used a miniature
camera mounted to the sixth joint of the PUMA 560 robot arm.
The system visually servoed itself to the correct crientation
and position to grasp a target. The system obtained 3-D
information about the target from a single camera which used
an iterative focusing method and a distance formula which
derived distance from two different images along the same

line of sight of the camera (7:417-422).

Summary

"Visual servo robot control systems provide feedback on
the relative end-effector position of a robot. They offer an
interactive positioning mechanism which depends upon
extraction and interpretation of visual information from the
environment” (12:115). Most current systems operate using
the basic static look-and-move sequence of operations. These
systems usually incorporate a camera mounted over the

18




workspace. However, there is increasing development in the
areas of integrated vision-robot systems using dynamic look-
and-move and visual-tracking techniques. These new
developments usually have the camera mounted directly on the
robot manipulator. An intelligent robot is "visionable" by
equipping it with the ability to sense and respond to a
changing environment.

This completes the Review of the Literature; the system

setup and methodology can now be presented.
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ITII. System Setup and Methodology

Introduction

The goal of this research is to design and implement a

visual servo control scheme to simulate the ground refueling

of an aircraft using a visually guided robot. An integrated

vision-robot system (VRS) composed of a PUMA 560 robot arm

and MIC vision system are used to accomplish the research.

This chapter describes the system setup and methodology

involved in applying static and dynamic, look-and-move visual

servo control schemes to an integrated robot-vision system.

Static Look-And-Move

To accomplish the task of developing a system that

searches for and acquires a target using static look-and-move

visual servo control, the task was separated into the

following four subtasks:

1.

Develop an open loop, static look-and-
move system with the camera mounted
above the robot work space.

Develop a closed loop, static look-and-move visual
servo control system with the camera mounted to the
third joint of the PUMA 560 that tracks a target
(white ball) against a black background.

Using the results from Subtask 2, develop a visual
servo control system that tracks and moves towards
the target.

Add to Subtask 3 by developirg a scanning algorithm
to search for and acquire the target.

The accomplishment of each subtask serves as a building block
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in achieving the overall task. The following subsections

describe each subtask’s system setup and methodology.

Subtask 1: Camera Mounted Above the Work Space.

This subtask verifies the interface between the MIC
system and the PUMA 560 robot arm. It introduces the
following: the PUMA 560 robot arm and its associated
peripherals; the VAL Il programming language; the MIC vision
system; the interface between the vision system and the PUMA
560; and the relationship between locations in the camera's
frame and the robot’s frame. A description of the PUMA 560,
the MIC vision system, and the interface between the two
systems is in Appendix A.

The camera is mounted to a camera stand and positioned
above a table in the robot’s work space as shown in Figure 3.
The vision system’'s effective work area is established by the
camera's field-of-view (FOV). The camera’s FOV is determined
by the type of lens used and its focal length, and is
described by the height and width of the visual field. The
lens used in this research is a Fujinon TV 1:1.4/25 and has a
FOV with a height of 300 mm and width of 365 mm.

The image processor in the vision system transforms the
grey-scale camera image into a binary imege by means of a
programmable threshold in order to generate its silhouette.
To simplify the threshold operation, images should be
selected with maximum contrast between the target and its
background. White targets against a black background are
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used in this subtask. A white target against a black
background also eliminates shadows, thereby abolishing any

requirement for special lighting.

e ive o

LY 1N

Figure 3. Camera Mounted Above the Work Space

An open loop, static look-and-move system is implemented
to verify the interface between the vision system and the
robot. The vision system identifies a target and provides
the two-dimensional location of its centroid. This

information is transmitted, open loop, tc the robot
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controller enabling the robot to move to the desired
location. A functional block diagram of the open loop
vision-robot control system is shown in Figure 4.
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Figure 4. Functional Block Diagram of The MIC/PUMA
Control System (18:3)
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A menu driven software package accomplishes the tasks
shown in Figure 5. Appendix B lists the various programs
used by this package (NOTE: 1listings of the system programs
are proprietary information and not provided. However,
brief descriptions of the software are in Appendix A).
Appendix C contains a user’s manual. The ’'WARNING' is
required to prevent unpredicted movements of the arm due to
inaccurate calibration. Figure 6 shows the software
structure of the various user selectable options. Option 1
initializes communication between the vision system and the

robot.

P TR P ST P i 12077

THE FOLLOWING OPTIONS ARE AVAILABLE
1. INITIALIZE VISION/ROBOT COMMUNICATION
2. VISION-TO-ROBOT CALIBRATION
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5. VISION DEMO
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Figure 5. Vision Menu
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Option 2 calibrates the vision-robot system. This
option determines the scale factor defining the ratio of the
distance between two locations in the robot’'s frame to the
distance in the camera’s frame. Finally, the vision-robot
work frame is established to determine the relative
transformation between the camera and the robot.

Options 3 and 4 deal with prototyping. Option 3 allows
the user to teach the vision system various targets, such as
a circle or rectangle. Option 4 enables the user to store,
recall, or delete the various targets trained.
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Option 5 calls another menu which runs a demo permitting
the user to run various programs which identify trained
targets and/or directs the robot to point to the centroid of
a target in the camera’s FOV. Figure 7 displays the various
user selectable options in the demo. Appendix B lists the
programs used in the demo options. Figures 8 displays the
software structure chart. Demo 1 instructs the vision system
to take a picture to determine the number of targets, and the
identification and centroid position of the largest target in
the camera’s FOV. Demos 2 and 3 accomplicsh the same tasks as
Demo 1 with the addition of instructing the robot to point to

the desired target’s centroid.
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Figure 7. Vision Demo Menu
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With the robot and vision systems introduced and the
interface verified, the remaining three subtasks will
describe the setup and methodology for developing a visually

guided robot refueler.

Subtask 2: Camera Mounted on Arm; Tracking

This subtask mounts the camera onto the third joint of
the PUMA 560 and implements a closed loop, static look-and-
move visual servo control scheme. The control scheme
utilizes information from the vision system to provide the
location of a target’s centroid to the robot controller. The
controller uses the location information to control the
motion of the robot in the PUMA's world coordinate frame.

The PUMA 560 manipulator is controlled point-to-point.
Motion between points can be controlled by a proportional (P)

or proportional and derivative (PD) feedback loop. The P
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feedback loop uses high gain position feedback to bring the
difference between the robot’s desired position and the
actual position to zero. However, a P feedback loop
controller cannot guarantee an overdamped response, i.e. no
overshoot (4:89-92). This visual servo control scheme cannot
afford a problem with overshoot, because the VRS may strike
the target or oscillate around it endlessly. To overcome
this problem, the PD feedback loop controller, which feeds
back velocity as well as position is used. This system is
tuned by the manufacturer to provide an overdamped response;
guaranteeing no overshoot. PD loop control is desired for
this research effort, however, the PD loop is only active for
28 millisecond increments. Therefore, robot mcvement
commands must be divided into motions that can be completed
during each time increment, otherwise P loop control takes
over and an overdamped response is not guaranteed.

It is desired to have the camera centered on the target
at all times. Therefore, as the target moves, the robot will
track it, attempting to keep the target centered in the
camera’s FOV., The vision system takes a picture and
estimates the error between the target's position and the
center of the camera’s FOV. The block diagram of the visual
servo control scheme is shown in Figure 9., This subtask
simulates the visually guided robot refueler’'s responsibility

to maintain camera view on the aircraft refueling port.
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Figure 9. Block Diagram of Visual Servo Control Scheme

The camera is mounted to the robot’s third joint using
Velcro strips. The camera lens is pointed perpendicularly to
the robot’s World Coordinate System (WCS) x-y plane, see
Figure 10. In this configuration, an offset exists between
the location of the camera and the robot’s end-effector. To
account for the offset, the center of the camera’s FOV is
considered to be the robot end-effector’s current location.
This is a translation along the camera’s viewing axis. An x
and y correction is not necessary since it is desired to keep
the target centered in the camera’s FOV, not centered below
the robot end-effector. Therefore, if the target is not

centered in the camera’s FOV +hen a picture is taken, the
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target’s x and y centroid position is considered an offset to

be corrected by the controller.

Figure 10. Camera Mount and Starting Position
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The vision-robot system is calibrated to relate camera
pixel positions in the camera’s x-y plane to robot positions
in the robot’s WCS x-y plane. Since this work is two-
dimensional and the x-y plane of the camera’s FOV is parallel
4 to the robot’s x-y plane, complicated transformations
relating the position of a target in the camera’'s FOV to the
t location of the robot's end-effector are not required. Thus,
during Subtask 2, the system is not interested in the
coordinate relationship between the robot’s location with
respect to a target placed in the camera’s FOV. The vision
3 system simply provides the x and y offset position of the
target with respect to the robot’s current x and y position.
Therefore, a simple one-to-one relationship exists between
the location of the target in the camera’s FOV and the
robot’'s work space.

The computer program, track.targ, (whose flow diagram is
shown in Figure 11 and program listing is in Appendix B) uses
information from the vision system to correct any offsets
between the centroid position of the target and the center of
the camera's FOV. Once the target is placed anywhere in the
camera’s FOV, its centroid position is transmitted to the
robot controller. This provides the information necessary to
command the robot to position the arm, such that the center

of the camera’s FOV is directly over the target’s centroid.
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Subtask 3: Camera on Arm; Tracking and Acquiring

This subtask builds on the second subtask by instructing
the vision-robot system to move towards the target a
predetermined distance while it is tracking. This simulates
the refueling nozzle approaching the refueling port. The same
closed loop, static look-and-move visual control scheme is
employed, with the additional capability of enabling the VRS
to move towards the target.

To provide the VRS with the distance of the target to
the camera, the vision system is trained with the target at
nine different locations, 25 mm apart, along the camera’s
pointing axis. When the target is at different distances
from the camera, the image size varies. The larger the
image, the closer the camera is to the target. During
training of the vision system, the target is placed in the
first position at the maximum distance from the camera lens.
In the ninth position, the target is trained at the closest
position to the camera. Thus, the larger the target in the
camera’s FOV, the closer the target is to the vision-robot
end-effector.

A white ball is used as the target to alleviate one
problem encountered with a fixed focus camera lens. As the
camera moves closer to the ball, the caméra image becomes out
of focus. However, the image still remains circular in the
camera’s FOV and the binary threshold computation produces
sharp boundaries for the centroid computation.
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The computer program, track.targ.scat, (whose partial
flow diagram is shown in Figure 12 and program listing is in
Appendix B) instructs the vision system to take a picture and
recognize one of the trained targets. Depending on which of
the nine targets is identified, the VRS knows the height of
the target from the camera. This method works fine for a
well defined target like a ball, however, an improved system
is required for a more complicated image.

The procedure described above, enables the VRS to obtain
three dimensional (x, y, z) information about the target
placed in the camera's FOV. The vision system takes a
picture to determine the x and y centroid position of the
target. The z position is determined once one of the nine
target images has been identified.

When a picture is taken, the VRS approaches the target.
To account for positional errors inherent in the vision-robot
system controller, the system converges towards the target in
increments, allowing the system to keep the target centered
in the camera’s FOV. This convergence method minimizes the
tracking error. The target identified determines the
incremental distance the system will move towards the target.
Another picture is taken and the process is repeated until
the VRS is at the desired distance and p;sition from the

target.
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Subtask 4: Camera on Arm: Search

This subtask completes the overall task of designing and
implementing a vision-robot system that searches for and
acquires a ball.

The computer program, search, (whose partial flow
diagram is shown in Figure 13 and program listing is in
Appendix B) instructs the VRS to go through a square conical
search, see Figure 14, covering the perimeter of the search
area first, then moving towards the center of the area. The
VRS moves in increments approximately equivalent to half the
camera’s FOV. Moving in this fashion provides an overlap to
ensure the search covers the entire search area. The search
is broken up into 16 increments, as shown in Figure 14. Each
time the robot moves in the search pattern, a picture is
taken to check if the ball is in the camera’s FOV. Once the
target has been acquired by the VRS, the procedures from
Subtask 3 are executed and the VRS visually servos itself
towards the target.

This completes the description of the system setup and
methodology for the closed loop, static look-and-move visual
servo control scheme. The dynamic look-and-move system is

presented in the next section.
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Dynamic Look-And-Move System

In this task, a closed loop, dynamic look-and-move

visual servo control system is designed and implemented.

This task repeats much of the work accomplished in Subtask 3.

The difference being in the approach-to-target motion of the
robot arm. The controller implemented in this task uses

dynamic visual servoing to guide the arm towards the ball.
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A system with parallel processing is required to
achieve true closed-loop, dynamic visual servo control.
Because of computer speed limitations, this capability is
currently not possible for this integrated vision-robot
configuration. However, a form of dynamic control using
serial program execution is possible with the present
configuration. In VAL II program execution, once a command
has been executed, the processor immediately executes the
next instruction, even if the last instruction has not been
completed. Unimation refers to the procedure as "procedural
motion” (17). Thus, when a command to process a picture is
executed before arm motion has stopped, the requirements for
dynamic, visual servo control are met. The situation exists
when the arm moves towards the target.

As the arm moves towards the ball, the computer program,
track.targ.dcat, (whose flow diagram is shown in Figure 15
and program listing is in Appendix B) instructs the vision
system to take a picture and provide real time corrections
for any offsets occurring as the arm moves towards the ball.

This completes the description of the system setup and

methodology for this thesis; the results are now presented.
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Software Flow Diagram of track.targ.dcat
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IV. Results and Discussion

Introduction

The goal of this thesis was to develop an integrated
vision-robot system (VRS) to visually acquire a target. The
VRS implemented two visual servo control techniques to guide
the system to the target. These two techniques included
static and dynamic, look-and-move visual servo control. Each
control technique was considered a separate task during
development and testing. The testing of each task of the
integrated VRS occurred simultaneously during development.
The results from each task were directly applied to
subsequent tasks. This chapter describes the results from

each task in the following sections.

Static Look-And-Move

The task of developing a static look-and-move visual

servo control system was divided into the following four

subtasks:

1. Develop an open loop, static look-and-move
system with the camera mounted above the robot.

2. Develop a closed loop, static lcok-and-move visual
servo control system with the camera mounted to the
third joint of the PUMA 560 that tracks a target
(wvhite ball) against a black background.

3. From Subtask 2, develop a visual servo control

system to track and approach tue target.

4. Add to Subtask 3 by developing a scanning algorithm
to search for and acquire the target.

These subtasks are described in the following subsections.
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Subtask 1: Camera Mounted Above the Work Space.

The first subtask was to develop an open loop, static
look-and-move scheme which has the video camera mounted above
the workspace. The purpose was to introduce the equipment
and verify the software and hardware interfaces between the
vision system and the robot. In this scheme, the camera was
mounted to a stand and positioned above the robot workspace.

The hardware and software interface was verified, the
vision-robot system calibrated, and the vision-robot work
frame established by following the procedures in the
Univision User’s Manual. 1In addition, two targets were
trained to the vision system; a white 2 inch diameter circle

and a white 3 by 5 inch rectangle, see Figure 16.

Figure 16. Targets Used in Subtask 1.
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Once the targets were trained to the vision system, the
program vision.demo, see Appendix B, was executed. The
programs executed in this demonstration successfully achieved
the open loop, static look-and-move configuration. Each time
a program was executed, the vision system identified the
target and transmitted its orientation and two-dimensional
centroid position to the robot controller.

The first program in the demonstration, ident.blobs, see
Appendix B, determined the number of targets in the camera’s
FOV, identified the largest target, and provided the
orientation and two-dimensional centroid position of the
largest target in the FOV. This program also instructed the
vision system to highlight each target on the video monitor
with a white border. It was observed, for the processing of
the rectangular target, that the inter-processor
communication and image processing took approximately 2.3
seconds during program execution. This time varies depending
on how many targets are processed. Figures 17, 18, and 19
show the rectangular target placed in the work frame, the
highlighted digitized image displayed on the vision system’s

video monitor, and the output to the user’s terminal.
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Figure 17. Rectangular Target Placed in Work Frame

Figure 18. Highlighted Digitized Image on Video Monitor
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Figure 19. User Terminal Output

The second program, ident.blob.point.center, see
Appendix B, accomplished the same tasks as ident.blobs, with
the addition of instructing the robot controller to position
the robot end-effector above the center of the target.
Figures 20, 21, and 22 show the circular target placed in the
work frame, the digitized image displayed on the vision
system’s monitor once the image was processed, and the final
position of the robot's end-effector after program execution.

Figure 23 shows the results displayed on the robot terminal.
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Figure 20. Circular Target Placed in Work Frame

Figure 21. Highlighted Digitized Image on Video Monitor
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Figure 22. Final Position of Robot End-Effector
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Figure 23. User Terminal Output
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The third progr.m, point.center, see Appendix B,
accomplished the same tasks as ident.blob.point.center,
except it did not highlight or identify the targets. This
minimized image processing thereby allowing faster operation.

During th: testing of the second and third programs,
several obse-vations indicated parallax induced errors in the
end-effector’s final position over the target when the target
was placed towards the edges of the work frame (see Figure
24) . However, this thesis was focused on visual servo
control, therefore, these errors were judged as insignificant
and disregarded since they did not have any bearing towards
the success or failure of the research. This subtask’s
purpose was to introduce the various systems and verify their

correct operation.

Figure 24. Digitized Image of Target Towards
Edge of Work Frame
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In summary, this subtask introduced and demonstrated the
various hardware and software used throughout the research
effort. The results demonstrated the ability to successfully
implement an open loop, static look-and-move configuration to
point to the centroid of a target placed anywhere in the work
frame.

The results presented next address the essence of the

research effort.

Subtask 2: Camera Mounted on Arm; Tracking

Subtask 2 initiated the first step towards developing an
integrated, closed loop, static look-and-move visual control
system. This subtask enabled the VRS to track any target
placed anywhere in the camera’'s FOV, The camera was mounted
to the third joint of the PUMA 560 and software was written
to guide the movement of the arm based on visual feedback
received from the vision system.

The vision system was calibrated (using the procedures
outlined by the Univision User’s Manual) from an initial
starting position based on robot joint positions,
#start.position. The initial starting position selected for
this research, aligned the camera perpendicularly to the
floor. The starting position was stored in software,
allowing the VRS to start from the same péint throughout
testing and development. A vision-robot frame did not have
to be established as in Subtask 1 becausz the camera was
mounted parallel to the robot's end-effector. This
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configuration considered the robot end-effector’s current
location to be the center of the camera’s FOV translated
along the camera’s viewing axis.

Once a target (white ball) was placed in the camera'’s
FOV, the program track.targ was executed. The program
instructed the vision system to take a picture and provide
the two-dimensional position (considered an offset) of the
target’'s centroid. The program corrected the offset by
commanding the robot to move by an amount equal to the
offset. The program repeated itself until the user aborted
it, therefore, enabling the system to maintain track on the
target as the target moved. It should be noted that the use
of a high contrast target, i.e., a white ball against a black
background always guaranteed easy, unambiguous "target"”
location. The general task of target location (finding an
arbitrary target in an arbitrary scene) was not considered
part of this research.

Robot motion continued until the vision system
determined that the target was within a window of + 10 mm
from the center of the camera’s FOV. Ten millimeters was
selected to reduce the amount of time required to center the
target in the camera’'s FOV. Without any window, however, the
VRS oscillated continuously around the tafget. primarily
because of jitter in the video quantizer and robot
positioning system. Since the application for this thesis

involved the refueling of an aircraft through a refueling
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port that is compliant within a 30 degree cone of insertion,
the use of a tolerance window should not be a problem. It
was observed that for this task, using the previously
described equipment, the time for the system to center itself
on a stationary target (white ball), place on one corner of
the camera’'s FOV, took approximately 2.0 seconds (=0.7
seconds was used in the image processing). Figure 25 shows
the sequential motion of the digital images on the video

monitor as the VRS visually servos itself to the target.

Figure 25. Sequential Motion During Visual Servoing

The oscillation mentioned above was due to errors
associated with the calculation of robot transformations and
with the image processing of the target. The errors associated
with the calculation of the desired final location in the robot
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controller occurred “"whenever a transformation is used to
define the destination of a robot motion™ (17). The
transformation must be converted into individual joint
positions, inevitably inducing (small) errors (17).
Factors that can affect accurate image processing and

thus cause errors in measurements include:

1) Image contrast, intensity, and threshold

2) Focus and parallax

3) Vision calibration

4) Video noise/spatial quantization.
Most of the errors introduced by these factors were minimized
by using a white ball for the target and a black background.
The voltage threshold for the video system was set to the
middle of the threshold scale, which was the optimal value as
discussed in the Univision User’s Manual (18). This provided
the maximum contrast and intensity during the research. A
ball also provided a circular image from any viewing angle
even if the lens was not in perfect focus. Parallax induced
errors were ignored since the VRS eventually aligned the
camera above the center of the target. As stated earlier,
the VRS was calibrated at an initial start position, thus
minimizing any calibration errors. The video noise/spatial
quantization errors are random and related to target size and
the related image boundary perturbations and can be ignored
due to the tolerance window.

Additionally, the vision system coordinates were scaled

52




by the scale factor determined during vision calibration.
With the camera mounted to the arm, it was observed that the
positive y direction of the camera's FOV was the negative y
direction of the robot’'s coordinate system. It was also
observed that the y component provided by the vision system
had to be further scaled by a factor of 2/3's to enable
accurate positioning of the vision-robot system. This
additional scale factor was necessary to account for the
difference in the x and y dimensions of each pixel element,
which is dependent on camera type.

Finally, to maintain active PD control, the robot motion
instructions for this task were broken up into no less than
10 continuous "back-to-back” move commands as opposed to 1 or
2 move commands. With less than 10 move commands, it was
observed that the VRS would continuously overshoot the
target. The overshoot problem resulted from the same errors
as those mentioned above for the oscillations and also during
the deceleration of the arm as it moved towards its desired
final location. The deceleration induced errors are due to
the P feedback control loop taking over control of the PUMA.
Breaking up the move commands allowed smooth robot motion
with minimal overshoot of the target.

In summary, the results of this sustask demonstrated the
ability of the VRS to successfully implement closed loop,
static look-and-move visual servo control techniques to track

a white ball placed anywhere in the camera’'s FOV,
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Subtask 3: Camera on Arm; Tracking and Acquiring

Subtask 3 continued the work accomplished in Subtask 2
by enabling the VRS to move towards its target as well as
track it.

To provide the VRS with the knowledge of how far to move
towards the target, the vision system was trained to
recognize a target at a predetermined distance. To enable
quick image processing, only the area of the target was used
for identification (another reason for using a ball, because
its two-dimensional image is always a circle). From the
starting position defined in Subtask 2, it was determined
that joint 6 of the PUMA 560 was approximately 350 mm from
the floor. From this initial position, the VRS was trained
to the white ball target. This initial target, referred to
as Target 1. was assigned to the first of nine locations in
the vision system’s memory. Each subsequent location in
memory was trained with the target 25 mm closer than the
previous target. Therefore, if Target 1 was identified by
the vision system, joint 6 would be 350 mm from the target
and 150 mm from the target if Target 9 was identified.

Once the target was placed in the camera’s FOV, the
program track.ball.scat was executed. The program
accomplished the same tasks as track.targ with the addition
of having the vision system identify the target (based on the
target’s area). The program used this additional information

to instruct the VRS to move towards the target. Robot motion
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continued until the target was at the desired distance away
from the VRS and within the 10 mm window discussed in Subtask 2.

As stated previously, the camera was mounted on the
third joint of the PUMA 560. The PUMA’s controller defined
the robot’s end position at its sixth joint with respect to
the robot base. It also doesn’t use just the first three
Joints to specify position when solving the inverse kinematic
solution for the final Jjoint locations. This was not a
problem in Subtask 2, where only tracking of a target was
required. However, in the subtask described here, it was
found that the VRS lost camera sight (two-dimensional) of the
target as the VRS approached the target. Therefore, an
offset had to be programmed to account for the position of
the camera as the camera approached the target. This offset
correction enabled the VRS to successfully track and approach
the target.

To further minimize the positional errors
encountered during the VRS's approach to the target, the
program instructed the VRS to converge towards the target in
increments. This distance convergence approach proved
successful and it was observed that the time for the VRS to
approach and center itself above a stationary target, placed
at one corner of the camera's FOV, took approximately 5.6
seconds. Figures 26, 27, and 28 show the sequential motion
of the VRS and of the digital images on the video monitor as

the VRS visually servos itself to the target.
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Figure 26.

Figure 27.

Starting Position of VRS

Intermediate Position of VRS
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Figure 28. Final Position of VRS

Originally, the VRS was to move within 50 mm of the
target. However, oscillations occurred whenever the target's
image in the camera’'s FOV encompassed an area greater than or
equal to half the viewing area of the camera. The
nsrillations were due to the video noise/spatial quantization
and the transformation conversion errors discussed in Sub-
task 2. The situation was resolved by allowing the VRS to
approach the target no closer than 200 mm. Since the
application of this thesis involves the refueling of an
aircraft, the limited approach does not pose a problem. As

shown in the artist’'s conception of the robotic refueler in
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Figure 29, the camera was mounted to the refueler’s third
joint, with the final location of the camera positioned above
and away from the refueling port, during the refueling

operation.

——

Figure 29. Robot Refueler (13:53)
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Additional work accomplished in Subtask 3 enabled the
VRS to become a tracker if the target started to move around
in the camera’'s FOV. This was an unlikely event for an
application involved with refueling a stationary aircraft,
however, it could be useful for other applications where the
target is allowed to move.

In summary, the results of this subtask demonstrated the
ability of the VRS to successfully implement closed loop,
static look-and-move visual servo control techniques to track
and approach a white ball placed anywhere in the camera’s

FOV.

Subtask 4: Camera on Arm; Search

Subtask 4 completed the overall task of developing an
integrated VRS that searched for and acquired the desired
target.

Once the target was placed anywhere in a predetermined
"search area", the program search was executed. The program
instructed the VRS to search for the target. Once the target
was found, Subtask 3 took over and visually servoed the VRS
to the target.

The search pattern for this subtask was divided into 16
increments in the robot’s WCS x-y plane. The increments were
determined by measuring the window (perimeter) visible in the
camera’s FOV. For the specific CRT display used in this
project, the size of the window was approximately 165 mm in

the x direction by 135 mm in the y direction. An overlap

59




between the increments in the search pattern was added to the
program, search, to ensure the entire search area was
scanned. Increments of 80 mm were used when the VRS moved in
the positive or negative x direction and in increments of 65

mm in the positive or negative y direction. The entire

A d

search covered an area of approximately 400 mm by 380 mm,
this was limited by the work envelope of the PUMA. The time
1 required to find the target depended on where the target was
placed in the search area. The search time ranged from 0.2
seconds directly below the VRS to 22.0 seconds when the
target was placed in the center of the search area. Figures
{ 30, 31, and 32 show only three of the sequential motions of

the VRS as it searched for the target and then servoed

towards it.

Figure 30. Starting Position of VRS
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Figure 31. Intermediate Position of VRS

ﬁ Figure 32. Final Position of VRS
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During testing of this subtask, it was discovered if the
target’'s initial position in the search area was at a
distance greater than that for which the vision system was
trained, the target could not be identified. This did not
prevent the vision system from acquiring the target since
acquisition was effected by previously existing detection and
centroid computation inherent to the vision system. When the
search mode was initiated, the vision system decided that a
target was in the camera’s FOV when its area (in pixels) was
greater than the smallest acceptable blob area set by the
user. For this research, the minimum area was arbitrarily
set to 10 pixels. To enable target verification following
acquisition, the VRS approached the target in 25 mm
increments until the vision system could identify the target.
Once the target was successfully identified, the VRS visually
servoed itself to the target as in Subtask 3.

Additional work accomplished in Subtask 4 enabled the
VRS to automatically restart the search if the target was
ever removed from the camera’'s FOV. This was an unlikely
event for an application involved with refueling a stationary
aircraft, however, it could be useful for other applications
where the target is allowed to move.

In summary, the results of this subtask demonstrated the
ability of the VRS to search for a target and successfully
implement closed loop, static look-and-move visual servo

control techniques to track and approach the target.
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The combined results of the four subtasks described
above achieved the desired goal of this research. The next
section discusses the results from additional research which
implemented a closed loop, dynamic look-and-move visual

control scheme in a tightly controlled environment.

Dynamic Look-And-Move System

The task of developing a closed loop, dynamic look-and;
move visual servo control system was an extension of the work
accomplished in Subtask 3 of the Static Look-and-Move
Task. However, dynamic visual servo control was implemented
when the VRS moved towards the target.

Once the target was placed near the center of the
camera’s FOV, the program track.targ.dcat was executed. From
all indications, the VRS performed in the same manner as in
Subtask 3. However, a difference existed in the movement of
the VRS towards the target. 1In this task, the robot motion
instructions were broken up into only 2 continuous "back-to-
back” move commands as opposed to the 10 move commands in
Subtask 3. Also robot motions were instructed to occur at
half the speed of those in Subtask 3. Under the concept of
procedural motion, a picture was taken during the second move
command in the program. The data from the image provided an
in-course correction to the VRS, thus allowing a smoother
approach to the target.

A limitation existed in this task because of the
oscillation problem discussed in Subtask 2. Therefore, the
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target had to be placed near the center of the camera's FOV
for the VRS to work correctly. It was observed for this
task, that the time for the VRS to approach and center itself
above a stationary target took approximately 6.1 seconds.
This is a slower time than Subtask’s 3, however, as stated
above, robot motions were at half the speed. When Subtask 3
was executed at the slower speed, it took approximately 7.8
seconds for the VRS to approach and center itself above the
stationary target. Figures 33, 34, and 35 show the

sequential motions of the VRS as it dynamically servoed

itself towards the target.

Figure 33. Starting Position of VRS
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g Figure 34. Intermediate Position of VRS

Figure 35. Final Position of VRS
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This completes the presentation of the results of the

research effort,

presented.

the conclusions and recommendations are now
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V. Conclusions and Recommendations

In this research, visual servo control schemes were
designed and integrated for a PUMA 560 robot arm which
derived its visual information from a MIC vision system.

The vision system’s camera, with fixed focused lens, was
rigidly mounted to the third joint of the PUMA. The two
control schemes researched involved static and dynamic, look-
and-move visual control techniques. These techniques
successfully implemented and demonstrated the concept of
using a robot, equipped with a vision sensor system, to

ground refuel an aircraft.

Conclusions

Two conclusions were drawn from the success of this
research effort. First, the results presented in Chapter IV
proved that the closed loop, static look-and-move visual
servo control vision-robot system (VRS) could successfully
find and move towards a well defined target, a white ball,
placed in a designated search area. The vision system was
used to identify the target and determine its two-dimensional
centroid position with respect to the robot’s end-effector.
Because one camera with a fixed focus lens was used, a crude
method was developed to determine the diskance from the
target to the camera. As the camera approached the target,

the target’'s image grew larger with respect to the camera’s
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field of view (FOV). Therefore, by training the target to
the vision system at different distances, the vision system
could determine, by which target was identified, the distance
from the target to the VRS. This distance measurement along
with the centroid position measurement provided three-
dimensional information about the target. This method worked
adequately for a well defined target like a ball, however, an
improved method would be required for a more complex target.
Finally, the results from Chapter IV also proved closed
loop, dynamic look-and-move visual servo control techniques
could be successfully implemented. However, due to slow
computer processing and the inability to implement parallel
processing, limitations existed with this control technique.
These limitations were overcome by using procedural motion.
During movements of the VRS over large distances, dynamic
visual control could only be successfully implemented. This
situation only occurs when the VRS moves towards the target.
Thus, although limitations existed in the closed loop,
dynamic look-and-move visual control techrique, excellent
results were achieved when the target was initially placed

near the center of the camera's FOV.
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Recommendations

The work accomplished in this research effort provides a
solid foundation on which to continue work in areas of
robotics and vision. The following are recommendations for

continued research in areas related to this thesis:

- Implement the visual servo control techniques
presented in this thesis on the Robotics and Automation
Laboratory (RAL) Hierarchical Control System (RHCS) (9). The
RHCS will be the primary system used for research with the
PUMA 560 at the Air Force Institute of Technology (AFIT).
The RHCS also allows the user to specify which joints are
controlled. This alleviates the problem associated with

solving for position using inverse kinematics.

- Using the RHCS, develop a parallel processing
capability, to enable real-time, closed loop, dynamic look-

and-move visual servo control for all robot motions.

- Decrease the computer processing time involved during
inter-computer communication by developing a quicker, more
efficient method for transferring mecsages between the two
computers., Almost twice as much time was spent on
communication than image processing (about 0.5 sec. for
communication and 0.3 sec. for image processing of the ball
target). A total processing time of less than .1 seconds is

required for real-time visual servo control (14:214).
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- Implement various image processing techniques
currently in existence at AFIT to enable the acquisition of
more visually complex targets against an arbitrary

background.

- Implement a more efficient method to determine the
distance to a target. Various techniques include using the

following: auto focus camera;, stereo vision; or sonar.

- Remount the camera on joint three at an angle, such
that the center of the camera’s FOV will be the at the center
of the robot’'s sixth joint, only translated along the z axis.
This will alleviate the requirement for programming an offset

for the camera location.

- Obtain a camera which weighs less then 5 kgs and mount
it to the sixth joint. This would be valuable to

applications where the target’s orientation is important.

70




Appendix A

Equipment and Interface Descriptions

This Appendix contains brief descriptions of the
hardware and software used in this research effort. Part 1
contains sections of Chapter 1 from (16) which is an
introduction and description of the PUMA Mark 11, 500 Series,
Robot System (in particular the PUMA 560). Part 2 is a copy
of the prefatory information from (18) which provides an
introduction and description of the Machine Intelligence
Corporation’s (MIC) Vision System. Finally, Part 3 is a copy
of (19) which contains descriptions of the interface software
between the MIC Vision System and Unimations’ VAL I1
programming language.

A miniature Table of Contents follows:

Table of Contents

Part Page
1. Description of PUMA 560 ....... et e e 72
2. Description of MIC Vision System ......:ivv0vevves 92
3. Interface Software Descriptions .......cco00e0s .. 106
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Part 1:

Description of PUMA 560 (16)
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CHAPTER 1
INTRODUCTION AND DESCRIPTION

1-1. INTRODUCTION

The Unimate PUMA Mark II, 500 Series Robot (Figure 1-1), is an
advanced computer controlled robot arm system, manufactured by
Unimatior. Incorporated, A Westinghouse Company, of Danbury,
Connecticut.

This equipment manual is to be used with VAL II and VAL PLUS
operating systems. It contains the introduction and description,
installation, operation, maintenance, troubleshooting, spare
narts list, appendixes, and a qlossary.

Instructions on how to write and execute programs for the PUMA
Mark II system is qiven in the "User's Guide To VAL II," Part No.
398T1, or "User's Guide to VAL PLUS," Part No. 398ACl.

Note

Appropriate programming manuals will be
sent to users of VAL II or VAL PLUS opera-
ting systems.

The mechanical and electrical drawings are contained in two separ-
ate manuals as follows:

PUMA Mark II, 500 Series, Mechanical Drawing Set, 394ABl
(for VAL II or VAL PLUS operating systems).

PUMA Mark II, 500 Series, Electrical Drawing Set, 394AC]
(for VAL II or VAL PLUS operating systems).

Please note that personnel responsible for programming and opera-
ting the PUMA are expected to attend the training course given by
the Unimation Technical Training Department. They must also have
complete understanding of all information qgiven in this manual
and the User's Guide. The combined information from the training
program and manuals will ensure safe and efficient operation of
the PUMA robot.

1-2. DESCRIPTION - PUMA SYSTEM AND SOFTWARE

1-2-1. PUMA SYSTEM. The PUMA robot system is designed to adapt

to a wide range of applications. The basic units are the teach pend-

ant, software, controller, peripherals, and robot arm.

74 1-1




v

The system software that controls the robot arm is stored in the
computer memory located in the controller, which also houses the
operating controls for the system.

To teach the robot arm, either of two procedures can be used.

The teach pendant may be used to manually direct the movements of
the robot arm through each step of the task. These steps are re-
corded and then stored in the computer memory. The second method
is to write a program using software instructions. Position data
and software programs are entered into the computer memory
through the peripheral terminal keyboard or through the teach
pendant.

In either case, the controller transmits the instructions from
the computer memory to the arm. Position data obtained from
incremental encoders and potentiometers in the robot arm are
transmitted back to the controller/computer to provide closed-
loop control of the arm motions.

The programs may also be stored external to the controller on a
floppy disk, a small flexible disk coated with a magnetic medium
that provides a permanent record of the program. The floppy disk
unit 1is an optional peripheral.

Additionally, the PUMA can be programmed to interact with its
environment by using external input and output signals. External
input (WX) signals can be used to halt a program, branch to another
program step, or branch to another subroutine. For example, an ex-
ternal 1input signal can stop the program when safe operation is
impaired. External output (OX) signals allow the PUMA system to
control other equipment related to its work environment. If the
WX/0X features are used, at least one optional I/O module is re-
quired.

The robot arm executes the instructions transmitted to it by the
controller. The arm assembly is capable of rotational movement
around six axes (five axes for the PUMA 550). The axes of rotation
are shown in Figure 1-2.

1-2-2. SOFTWARE. The PUMA system operates on a high level lan-
guage called VAL II or VAL PLUS. In addition to being a sophis-
ticated prcgramming language developed for assembly, it is a com-
plete robot control system.




WAIST (JOINT 1)
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PUMA 560

Figure 1-2. Robot Arm: Joint Identification
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The VAL II or VAL PLUS programming language consists of a full
set of English language instructions for teaching and editing.
However, the VAL II control system has additional capabilities
that readily communicate with other computer based systems such
as vision and force sensors, as well as with supervisory computer
systems.

Robot programming can be accomplished by the teach-by-showing
method using the teach pendant or by keyboard entry. The full
programming versatility can be realized only through the key-
board.

In either programming method, all taught points are stored as
transformations (referenced to a coordinate system fixed relative
to the stationary robot base), as precision points (position
information stored in the form of joint angles), or as compound
transformations (point locations referenced to previous locations
as a measurement from a Cartesian coordinate system fixed
relative to the tool mounting surface).

1-3. DESCRIPTION - CONTROLLER

The controller 1s the master component of the electrical system.
All signals to and from the robot pass through the controller and
are used by 1t to perform real-time calculations to control arm
movement and position (Figure 1-3). (Peripheral components are
discussed 1n paragraph 1-4.)

Operating controls and indicators are located on the front and
top panels of the controller. Connections for the robot arm,
terminal, tloppy disk drive, I/0O modules, and accessory are
located on the controller rear panel. Software is stored in the
computer memory, located in the controller. The software
interprets the operating instructions for the robot. arm, and the
controller transmits these instructions from the computer memory

to the arm. From incremental encoders and potentiometers in the
robot arm, the controller/computer receives data about arm
position. This provides a closed loop control of arm motions.
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Figure 1-3. PUMA System:
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The main internal components of the controller are listed below.
Their locations are shown in Fiqures 1-4 and 1-4A, and described
1n paragraphs 1-3-1 through 1-3-9.

a. DEC LSI-11 computer (DEC and LSI-11 are trademards of
Digital Equipment Corporation). (See Note.)

b. DLV11-J quad serial interface boards (two). (See Note.)

c. CMOS board. (See Note.)

d. "A" interface board {(with boot chips)

e. "B" interface board (with clock)

f. Digital servo boards (six)

g. Power amplifier assemblies (one major and one minor)

h. Power amplifier control board

i. Input/output interface board (not shown)

j. Power supplies (two)

k. High power function board

1. Arm cable board

Note
1. The VAL PLUS operating system contains an
LSI-11/23 processor, 48K CMOS, (additional
memory opticnal), and one quad serial board.
2. The VAL II operating system contains an
LSI-11/73 processor, 64K CMOS (additional
memory optional), and two quad serial boards.
1-3-1. LSI-11 COMPUTER SYSTEM. The LSI-11 system is a stand-
ard DEC unit containing a processor, memory and communication
boards. System software and user programs are stored in a
Complimentary Metal Oxide Semiconductor (CMOS) nonvolatile memory.
Communication between processor and other components is accom-
plished as follows:

a. A four-ncrt asynchronous serial interface board
(DLV11-J) links the processor, terminal, teach pendant, and high-
density floppy disk. A second DLVII-J board is available to serve
as the link between the system processor and a Supervisory pro-

cessor system. This same board provides communications along
the real-time trajectory modifications link known as ALTER.
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>. The "A" interface board provides a communications link
to the "B" interface board (paragraph 1-3-2). The analog-to-
diqgital converter that reads the potentiometers is located on
the "A" interface board.

1-3-2. “B" INTERFACE BOARD. The "B" interface board links the
LSI-11 system through the "A" interface board, to the servo drive
side of the control system. Command signals sent by the LSI/11
are interfaced to a servo bus by this board. Once the commands
or data have been interpreted and acted upon, return siqnals are
sent to the LSI-11 through the "A" interface board. Multiplexer
circuitry on this board provides analog-to-digital conversion of
motor potentiometer feedback and clock/terminator functions.

1-3-3. DIGITAL SERVO BOARDS. There are six digital servo
boards, one for each joint. Each ijoint is controlled by a
separate microprocessor. Position inputs from the computer, as
dictated by the LSI-11 calculations, are fed into the digital
servo board every 28 milliseconds. Digital information is fed to
a digital~to-analog convertor to generate the analog signal
required to drive the DC servomotors. Communications from each
digital servo board t-rough the "A" and "B" interface boards, to
the LSI-11, are controlled by a protocol using interrupt servic-
ing routines.

1-3-4. POWER AMPLIFIER ASSEMBLIES. For each joint, the output
from the digital servo board is fed to a power amplifier board,
where it is amplified to voltage and current levels high enough
to drive the servomotors. Outputs from the power amplifier
boards are fed to the arm through the connecting cable via the
arm cable board assembly (paragraph 1-3-10).

1-3-5. POWER AMPLIFIER CONTROL BOARD. The power amplifier
control board contains the following:

a. Six joint error indicator lights. When 1lit, these lights
indicate an overcurrent hardware failure.

b. A joint reset pushbutton. Pressing pushbutton resets joint
after error has been corrected.

¢c. Two high temperature indicator lights, Thl and Th2. When
lit, these lights indicate the presence of high temperature at the
power amplifier assemblies.




1-5. DESCRIPTION - ROBOT ARM

The robot arm is the mechanical component of the system incorpo-
rating 6 deqgrees of freedom (5 degrees on PUMA 550), each con-
trolled by a DC servomotor. It 1is sufficiently flexible to be
taught a wide variety of tasks. Each member of the robot arm is
connected to another member at a joint, much like a human arm and
torso. Through each joint passes one or more axes around which
the members of the arm rotate.

The members of the robot arm are shown in Fiqure 1-15; they are
the trunk, shoulder, upper arm, forearm, wrist, and gripper.
The robot arm members contain the various servomotors and qgear
trains.

To achieve maximum strength with minimum weight, the upper arm
and forearm are of monocoque contruction. Monocoque 1is a method
of construction that uses the covering plates or "skin" of an
assembly to carry all or part of the stresses.

The axes of rotation and the ranges of rotation are shown in
Figure 1-16 and described in Table 1-3.
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Figure 1-15. Robot Arm: Member Identification
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Table

1-3. Robot Arm Axes

JOINT

DESCRIPTION

Waist - Joint 1

Elbow - Joint 3

Wrist - Joint 4
({PUMA 560 only)

Shoulder - Joint 2

Joint 1 axis is perpendicular to the
mounting plane of the PUMA and coin-
cident with the centerline of the
trunk.

Joint 2 axis is perpendicular to and
intersects Joint 1 axis; it is coin-
cident with the centerline of the
shoulder.

Joint 3 axis is parallel to the
Joint 2 axis.

Joint 4 axis is perpendicular to and
intersects Joint 5 axis.

Wrist - Joint 5 Joint 5 axis (Joint 4 on PUMA 550)
(Joint 4 on is parallel to the Joint 2 and 3

PUMA 550) axes

Joint 6 axis (Joint S on PUMA 550)
is perpendicular to and intersects
Joint 5 axis (Joint 4 on PUMA 550):
it is coincident with the centerline
of the qgripper mounting flange.

Wrist - Joint 6
(Joint 5 on
PUMA 550)

Ilach member of the arm assembly is driven by a permanent-magnet DC
servomotor driving through its associated qgear train. Each motor
in the PUMA robot arm contains an incremental encoder and a poten-
tiometer driven through a 116 to 1 gear reduction. The proper
functioning of the PUMA requires control of the position and the
velocity of each joint of the robot arm.

For a servo-controlled robot system, position must be measured
relative to a known initial, absolute position. The potentiometers,
incorporated in the motor, are used to initialize the PUMA; that

is, to establish its absolute position. The initializing proce-
dure must be done each time the PUMA system is powered up. (Refer
to paragraph 3-4.)

The incremental encoders are mounted on the shaft of each motor
and provide position change and velocity signals for the servo
system. Position change signals are read from the encoders, and
velocity signals are calculated. Approximately 32 times during
each 28-millisecond window of the digital servo system, the
signals from the encoders are compared to the calculated position
and any necessary correction signals are generated.
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The servomotors for the major axes (Joints 1, 2, and 3) are
eGuipped with electromagnetic brakes. These brakes are acti-
vated when power is removed from the motors, thereby Jocking
the robot arnm in a fixed position. This satety feature removes
the risk of injury or damage that could result from the arm
collapsing it power is accidentally removed.

Power for the motors is supplied through the cable connecting the
rotot arm and the controller. Feedback siqgnals from the incremen-
tal encoders and potentiometers are also carried by this cable.

1-5-1. WAIST - JOINT 1. The motor for Joint 1 is located out-
side the trunk, on the base casting. The gear train is shown in
Fiqure 1-17. For clarity of description, the gear train is divided
into three sections (Table 1-4).

Table 1-4 Joint 1 - Gear Train

COMPONENT DESCRIPTION
Motor shaft spur A spur pinion cut into the end of
pinion and two gears the motor shaft drives two spur

gears simultaneously.

Note

Pinion: Of the two gears that
run together, the pinion has
the smaller number of teeth.

Gear: Of two gears that
run together, the gear has
the greater number of teeth.

Idler shafts The two spur gears transmit power
through idler shafts that have
different torsional rigidities.
In one, torsional rigidity is high.
This prevents any appreciable
twisting of the shaft around its
long axis (called windup). The
other shaft has a lower torsional
rigidity designed for a predeter-
mined amount of windup to preload
the entire gear train eliminating

backlash.
Two pinions and the Two more pinions, at the end of the
bull gear idler shafts, drive the bull gear.
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1-6. SPECIFICATIONS

Table 1-5 contains the specifications for the PUMA system.

Table 1-5.

Specifications

ITEM

SPECIFICATIONS

Robot Arm

Axes
Clearance Required

Mounting Orientation

Weight
Drive

Mounting Surface
s for Gripper

Maximum Inertia Load
(Including Standard
Gripper: Toggle

Parallel Type - P/N
j 510-0100)

Wrist Rotation

Wrist Bend -

Flange Rotation

Static Force at Tool

Type - P/N 510-9013;

Joint 4 (PUMA 560)

Joint 4 (PUMA 550)
Joint 5 (PUMA 560)

Joint 5 (PUMA 550)
Joint 6 (PUMA 560)

Six revolute axes (5 axes for PUMA
550)

Spherical volume with shoulder at
center: 0.92 m (36.2 in.) radius

Must be mounted vertically. Base
must be level within 1 degree.
Vertical can mean right side up or
upside down --- NOT horizontal.

534 .N (120 1b)
Electric DC servomotor

Four 10-24 holes on a 0.041 m
(1.625 in.) diameter bolt circle

NOT to exceed 5.7 in.-oz-sec? (e.qg.,
5.5 1lb steel, 4 in. dia. disk mounted
5 in. from wrist rotation axis).

NOT to exceed 5.7 in.-oz-sec? (e.q.,
5.5 1b steel, 4 in. dia. disk mounted
5 in. from wrist bend axis).

NOT to exceed 0.5 in.-oz-sec? (e.g.,
5.5 1b steel, 4 in. dia. disk cen-
tered on axis of rotation).

58 N (13.0 1b) maximum
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Table 1-5.

Specifications (Cont)

ITEM

SPECIFICATIONS

Position Repeatability

Gripper Control

Tool Acceleration

Tool Velocity

Software Movement Limits

Waist - Joint 1
Shoulder - Joint 2
Elbow - Joint 3

Wrist - Joint 4
{PUMA 560)

Wrist - Joint 5
(PUMA 560)
Wrist - Joint ¢4
(PUMA 550)

Wrist - Joint 6
(PUMA 560)
Wrist - Joint 5
(PUMA 550)

Joint Angular Resolution

PUMA 550/560
Waist - Joint 1
Shoulder - Joint 2
Elbow - Joint 3
PUMA 550

Wrist - Joint 4

Wrist - Joint 5

1=-30

+0.1 mm (+0.004 inches) within pri-
mary work envelope (as measured to
center of the tool mounting flange).
Computer controlled, pneumatic

0.003 m3/s at 710 KPa (6 ft3/min

at 100 psi)

1 g maximum (with maximum load)

1.0 m/s (3.3 fps) maximum (with max-

imum load within primary work enve-
lope)

5.59 r (320 degqg)
4.36 r (250 degqg)
4,72 r (270 degqg)

5.24 r (300 degqg)

3.49 r (200 deg)

9.29 r (532 deq)

5.7557 x 10~3 deg/bit’
4.17408 x 10-3 deg/bit
6.7098 x 10-3 deg/bit

5.00625 x 103 deg/bit
4.69177 x 10-3 deg/bit
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Table 1-5. Specifications (Cont)

’ ITEM SPECIFICATIONS

PUMA 560
Wrist - Joint 4 4.7361 x 10~3 deg/bit
Wrist - Joint 5 5.00625 x 10-3 deg/bit
Wrist - Joint 6 4.69177 x 10-3 deg/bit
3 Encoder Index Resolution

(One Motor Revolution)

PUMA 550/560

Waist - Joint 1 5.7557 deg
Shoulder - Joint 2 3.3392 deg
Elbow - Joint 3 6.7098 deg
PUMA 550
Wrist - Joint 4 5.0062 deg
g Wrist - Joint 5 4.6918 deg
PUMA 560
Wrist - Joint 4 4.7358 deg
Wrist - Joint 5 5.0062 deg
1 Wrist - Joint 6 4.6918 deg

Velocity at SPEED 100

PUMA 550/560

Waist - Joint 1 82.1 deg/sec

Shoulder - Joint 2 53.5 deg/sec

b Elbow - Joint 3 122.1 deg/sec
PUMA 550

Wrist - Joint 4 241.4 deg/sec

Wrist - Joint 5 227.8 deg/sec
PUMA 560

Wrist - Joint 4 227.8 deg/sec

Wrist - Joint 5 241.4 deg/sec

Wrist - Joint 6 227.8 deg/sec
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-.;-Ww_'——m’“’"" -

Specifications (Cont)

ITEM

SPECIFICATIONS

Maximum Linear Velocity
at Speed 100

Maximum Cartesian and
Joint Acceleration

(= Deceleration) Time.
Rest to Maximum Velocity

Cartesian

Waist - Joint 1
Shoulder - Joint 2
Elbow - Joint 3

Wrist - Joint 4
Wrist - Joint S
Wrist - Joint 6

| Maximum Envelope Error
¢ {Joint Excursion to
Fatal Error)

PUMA 550/560

Waist - Joint 1
Shoulder - Joint 2
Eilbow - Joint 3

PUMA 550
Wrist - Joint 4
Wrist - Joint S
PUMA 560
Wrist - Joint 4
Wrist - Joint S
Wrist - Joint 6

Controller

Dimensions

Weight

468 mm/sec

0.112 sec
0.112 sec
0.112 sec
0.056 sec
0.056 sec
0.056 sec
0.056 sec

11.51 deg
8.34 deg
13.41 deg

10.01 deg
9.38 deg

9.47 deg
10.01 deg
9.38 deg

0.48 m (19 inches) W x 0.311 m
(12.25 in.) H x 0.050 m (19.7 in.) D

356 N (80 1b)
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Model VS-100

' MACHINE VISION SYSTEM

MACHINE VISION SYSTEM

sttt WTELLIENCE COAPRRATON “ - .
— - —

For Inspection, Material Handling, and Assembly
Simplified Light Pen Control

Easy Programming by Showing

Versatile Camera Inputs

Programmable Output Control

Powerful Computing Capability

C

T

Machine Intelligence Corporation
1120 San Antonio Road

Palo Alto, California 94303

418) 968-4008

-

N

93

TRET




Theory of Operation

The VS-100 consists of one or more
cameras (any of four types), an image proces-
sing unit, and a Digital Equipment LSI-11
microcomputer. It accepts images from up to
two separate cameras (A), which may be oper-
ated with a strobe lamp triggered under VS-100
control. The image processing unit (B)
transforms camera images into binary (btack
and white) images that are run-length encoded
for data compression and subsequent proces-
sing. Efficient algorithms operating in the LSI-11
(C) perform a complete connectivity analysis of
the encoded images, building data structures
that represent essential features of each con-
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tiguous region. Up to 13 distinguishing features
such as area, perimeter, center of gravity,
number of holes, and minimum and maximum
radii can be extracted for each region.

Object recognition is performed using a
nearest neighbor classifier operating on a user-
selectable subset of the features. Precise
numerical measurements are computed {0 in-
dicate the degree of confidence in the sysiem's
recognition of the object. If the degree of matr
of the selected features is above a user-
adjustable threshold, the object is rejected as
unkrown or defective. Once an object is
recognized, its position and orientation are
determined.

= M - =
2
Functional Block Diagram
Video l
Mixer
TV Monitor
v
Cameras 256 x 256 256 x 256 256 x 256
Image Image Display -
Buffer Butfer Buffer Light Pen
Control
@ Camera
Interface
S — VE100 B
\ Strobe Image Processing
/ Lamp Controi
A Control B
- Modular
Loi-11 Bus Expansion
i +—=Communication
LSI-11 64K Byte Paraltel Serial [T anc
Computer Memory interface Interface {T—  Control
Cassette
Recorder Segrsor
c Maniputator




VVigion System

An Eye on the Future

The age of automated vision is here. In the
factory, non-contact visual sensing can be used
for inspection, measurement of critical dimen-
sions, parts sorting, programmable part presen-
tation, sensing for process control, and
automated assembly For a modest capital in-
vestment (that won't increase for multi-shift
operation), machine vision provides:

* enhanced productivity,
¢ improved quality control, and
* greater reliability.

Machine Intelligence Corporation has
utilized the results of over a decade of
government-sponsored research in automated
w»ision and engineered the VS-100 Vision
System—a rugged. versatile, compiete unit
designed for industrial applications.

The VS-100 Vision System

The VS-100 is a highly advanced system,
with both a broad range of image processing
capabilities and ease of use. It recognizes and
inspects images of complex objects against a
contrasting background in real time. The objects
can be anywhere in the field of view, 1n any
orientation, even on a moving bell. Thus, a
workpiece randomly positioned on a belt or a
table can be located precisely, so that it can be
inspected, or acquired and manipuiated by an
industrial robot or other positioning device.

Ease of Use

A most striking feature of the VS-100 is its
numan engineering. The VS-100 can be trained
10 analyze new objects sinply by showing them
‘c the system. interact:ons with the system are
~neru-driven, using iight-pen nput; for most
applications, users never need 1o touch a
xeyboard! Easy-to-use menus aliow selection of
the threshold level, reievant teatures, and other
imporiant parameters for specific applications.
System control is by light pen, too. Calibration,
training-by-showing, and storing and loading of
prototype data can easily be done, with
minimum training.

A Complete Developnient Tool

Because of its generality and simplicity of
nse, the VS-100 is ideal for developing and
assessing applications of visual sensing. The
VS-100 is a complete system including display,
light pen, storage device fcr prototype informa-
ton and a camera of your choice, as well as
the visual processing unit. Yet its modular,
expandable design perrmits easy system integra-
tion.
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The VS-100 accepts on-off signals from
external devices, and can in turn send on-off
signals to other devices—up to sixteen in all.
Three serial ports are available for commun-
ication with other computers—Ilarge hosts for
system development or microcomputers for
controlling gates, X-Y tables, industrial robots,
or other manipulators. Special interfaces to
other PDP-11 computers and several robots are
available. The LSI-11 bus allows efficient
interaction with a wide range of compatibie
devices (such as A/D and SIA converters and
other LSI-11 modules) which you can add for
your own purposes.

A Cost-Effective Application Device

The many sophisticated features of the
VS-100 have been engineered for fast, consis-
tant operation in a production environment.
Where the system can be used without a large
investment in ancillary equipment, the cost of
the unit can be justified for a one-shift opera-
tion. In (nost instances, a complete system in-
cluding the VS-100 and some computer-
controlled manipuiatior provides adequate
return on invesiment for a two-shift operation.
The VS-100 provides high reliability: it operates
at full accuracy around the clock, every day of
the week. Battery power backup is an available
option. Application-specific functions can be
programmec by our staff.

What the VS-100 Can Do for You

Examples of applications in which the
VS-100 can improve product quality and reduce
costs include:

Inspection-
Integrity and compieteness
Shape and size defects
Flash
Number, size, and positioning of holes
Cosmetic stains
Cracks ar.d burrs
Measurement of critical dimensions

Sensor-controlled acquisition and
manipulation-

Workpiece sorting

Workpieces randomly positioned on
conveyors

Manufacturing processes requiring visual
feedback

Fastening operations

In-prccess inspection




SPECIFICATIONS
Model VS-100 Vision System

General Features

* Human engineerad 1o provide interactive menu-driven selection of threshold level, relevant features and other important
parameters for specific applications, using light-pen input.

Training-by-showing for simplified programming.

Binary threshold settable by either light pen (interactively) or by program control.

Settable black or white background.

Fast run-length data cornpression hardware.

Single pixel noise rejection-optionally settable.

Software windowing of image area by light pen control.

Menu-driven conneclivity analysis software.

Optionally reprocessing of selected image data.

Menu-driven feature selection and calibration.

DEC LSi-11/2 computer with EIS/FIS and 64K Byte RAM.

Cassette recorder for program loading and prototype storage.

2 strobe lamp triggers for ‘freezing’’ moving objects.

2 quad-siots or 4-dual-siots available on LSI-11 backplane for customized applications, e.q.. A/D, D/A, TTL interfaces.

Processing time for many applications within a fraction of a second.

Input/Output

e Can accommodate up to 2 cameras, singly or in combination from the following types:
a. GE TN2200, 128 x 128 sotid state array (standard)
b. GE TN2500, 240 x 240 solid state array {(optional)
¢. Reticon LCB00C256-1, 256 x 1 solid state array (optional)
d. Standard (RS-170) vidicon with externai sync (optionai)

o Light pen input

e 4-port serial RS-232C, RS-422 or RS-423 interface (DLV11-J)

* 16-bit parailel TTL interface (DRV11)

e 2 frame buffers for up to 256 x 256 pixel arrays (binary)

s 1 display buffer (256 x 256) for graphics and text overtays

e 1 12" TV Display Monitor for displaying binary image data, processed image data, and analog images

Communications Interface

s Standard RS-232C. RS-422 or RS-423 serial communication ports for host and/or control computers.

e Data rate jumper-selectabie from 150 to 38,400 baud.

Manipulator interface

* Bidirectional 16-bit paraliel interface may be used for manipulator control applications,—communication protocols
are available for several major industrial robots.

Mechanical

e Cabinet enclosure, Can also be installed in a standard 19" rack.
¢ Rack-mount dimensions: S% " high; 17" wide; 24’ deep
e Weight approximately 50 Ibs.

Electrical

e Power: 105-125 VAC, 60 HZ, 300 watts maximum

o Optional: Battery stand-by supply, will maintain program and data storage for up to 4 hours.
Warranty

¢ The VS-100 Machine Vision System is guaranteed 10 be free of manufacturing parts and labor defects for a period of SO
days after delivery.

For further information or applications assistance, please write or call.

C

T .

Machine Intelligence Corporation
1120 San Antonio Road
- Palo Alto, California 94303

(415) 968-4008
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SECTION I
INTRODUCTION

Univision is a camera-based processing system which enahles VAL, the

UNIMATE control svystem, to locate and identifvy obiects within a given
work area. The Univision svstem is composed of three subsvstems,

namelvy:
(1) Area array camera sensors (maximum of two)
(2) Vision processor, including:
(a) Machine Intelligence Corporation (MIC) VS-100 Processor

(b) Light pen and monitor for user interaction with the
vision svstem

(3) Univision Interface Kit enabling VAL, appended with vision
commands, to coummunicate with the vision processor. The Kit
includes:

(a) Interprocessor Communications Interface Card

(b) Interprocessor Communicationns Cables

(c) Vision software and Aiagnostics (down loadable from VAL’s
floopy disk)

A block diagram of the hardware system is shown in Fiqure 1l.1.

The Univision svstem locates and cateqorizes stationarv, obijects within
its field of view on the basis of features extracted from each ohject”s
silhouette - silhouettes generated from a svatiallv aquantized image
obtained from a single, fixed, overhead view. The control system, VAL,
transforms the object location/orientation information into rohot
coordinates so that it can identifvy an aporopriate user-defined,
object-denendent grasp point(s), and then nick up and move the ohject as
desired,

The key element in Univision is the VS-100 processor - a sonhisticated
image processing and pattern recognition system. Most of its
sonhistication is hidden from the user by its easy-to-use, high-level,
menu-driven architecture. However, effective aoplication of the
Univision svstem will require, in most cases, that the user have a hasic
understanding of the "behind-the-gcenes" operation of this device. The
next section will discuss the operation of the Univision/VAL control
svstem and will focus, in particular, on the VS-100 nrocessing.

1.1 FUNCTIONAL OPERATION OF THE UMIVISION/PUMA CONTROL SYSTEM
Figure 1.2 shows a functional bhlock diagram of the Univision/PUMA

control system. The diagram illustrates the processirg functions
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necessary to locate, recognize, and pick up marts. The basic functions
are:

(1) 1Image Formation

(2) Boundary Detection

(3) Location and Orientation Computation

(4) Extraction of Orientation-Indepepdent Features
(5) Object Classification (Recognition)

() Inter-Processor Communication

(7) Transformation of Ohject Location/Orientation from the Vision
Frame to the Robot Frame

(8) Control

We will now describe, 1in detail, the internal operation of
Univision/PUMA Auring a tvpical visinn-aided task. We“ll consider the
task of picking up a wrench, located and oriented arhitrarilv within
Univision®s field of view, and placing it in a bin. The stens required
to complete this task are as follows:

l. VAL initiates the task by sending a message to the vision
processor asking it to freeze the current video frame (picture)
for further processing. One frame of video, consistina of an
array of N1 x N2 analog voltages (gray scale), each pronortional
to the image intensitv on a particular photo element (pixel) in
the solid state array, is sent to the vision processor. The N2
Ycolumn voltages" are read out continuouslv in a raster-type scan
for each of the Nl rows of the sensor array grid.

2. The vision system thresholds the video, on-the-fly, thus creating
a binary image or silhouette. The thresholding overation defines

each object”s outline or boundary. To further simplifv processing,
onlv the position of threshold crossinas (positive and/or negative)

and the number of pixels, or run length, in between each crossing

are stored in image memory for each raster scan line. This coding

process is called run length encoding and results in near minimal
storage of the information in the binarv opicture.

3. The vision system performs connectivitv analvsis which comhines
all run lengths which are part nf an object’s silhouette. This
analysis also detects the presence of holes. Anv ohjects whose
silhouettes merge are suhsequently treated as a single obiect
after this step.

4. In parallel with "3.", the vision processor sums the centroids of
all of the run lengths for each silhouette to ohtain its centroid

location in camera coordinates. Orientation, using anv of a variec,
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of orientation algorithms, is also computed.

Feature extraction, the process of computing a set of acuantities
that can he used in obhject (mattern) classification, is then
verformed by the vision processor. 1In Univision, onlv orientation/
position-independent features are computed because a part must he

recognized regardless of its placement in the field of view. Tvpical
features computed are area, compactinn (perimeter * * 2/area), second

moments, numbher of holes, etc. The VS-100 allows the user to choose
these features, among a set of 13 and aids the user in selecting
those features which are best for a given application.

Object classification is then merformed bv statisticallv comparing
the computed features of the silhouette with those of silhouettes
generated by a set of prototype ohjects. Tyoicallv, the prototvpes
are the set of ohjects that none would expect to "see" at the
workstation. The user trains Univision to recoanize these parts.
During the training orocess, the vision system establishes the mean
and variability of the features of the orototvoe silhouette over a
variety of positions and orientations within the field of view and
over the possible stable states of the orototype object.

Silhouettes are classified as heinag a "member" of the prototype
group if the statistical "distance" between the features of the
prototvpe and the silhouette is shortest. This technique is called
"nearest-neighhor" classification. The f0llowing examnle will
explain the process and ooint out the importance of prototvpe
training.

EXAMPLE: “e will suppose that (1) our prototvpes are limited to
two objects - an adjustahle wrench and a fixed head wrench; and,
(2) the feature that most easilv classifies them is the commaction
index, c = perimeter * * 2/area. During training, we "show" the
vision svstem the two objects in a variety of vossible locations,
and orientations. In the case of the adjustable wrench, we also
train on the expected range of wrench omenings. This trairing
procedure defines the mean and variahilitv of the features used
during classification. The snread (prohabilitv) functions of ¢
for the two objects after training are illustrated in Fiqure 1.3.
As shown, the adjustable wrench exhibits higher feature variabilitv
because its perimeter can varv significantlv, as a function of
opening, without significant changes in area.

The statistical distance from a measured feature, ¢, to the average
feature of a prototype ¢ is measured in terms of the number of
standard deviations 4 hetween ¢ and c¢. If 0 defines the

nrototvoe variahilitv estahlished during orototvping, then the
distance, 4, is
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7.

d is in a sense a probahilitv measure - as & increases, the
probabilitv that the ohject matches the prototvpe decreases.

For example, if A4 > 3, and the snread function of the prototype
feature is normally (Gaussian) distributed, there is less than a

1% chance that the object is a membher of the prototvpe rlassification

The nearest neighbor classification procedure computes the "distance"
between the object feature(s) and each prototype“s feature(s). The
ohject is classified as a member of the prototvme group if

(1) its feature "distance", A*, to the oprototvme is shortest; and,
{2) d* < dmax where Amax estabhlishes a statistical rconfidence limit
bevond which the object cannot be classified - the orohabhilitv that
the object is a member of any prototvpe group is too small.

If we refer to Figure 1.3 we see then that.an ohject with compaction
index, cl, would be classified as an adAjustahle wrench. Nnte,

however, that the numerical value of Cl is actually closer to ©
measured for a fixed head wrench. An object with feature c2 cannot

he classified since it clearly lies outsife anv reasonahle
confidence interval of heing a memher of either the wrench
classifications.

As can be seen, prototvpe trainina is kev to reliahle ohject
classification., Care must he taken bv the usear to ensure that the
mean and variability of silhouette features measured during trainina
adeauately reflects that which will he encountered in nractice.

The nearest-neighbor classification algorithm is Adone "hehind-the-
scenes"” in the VS-100 and normally requires no user intervention
excent during prototvpe training. In this regard, the VS-100
system helps the user to train prototvnes and allows him to
evaluate, improve, and oredict classification performance hefore
he outs the svstem on-line.

Upon receiving a comoletion message on the original picture command,
VAL asks the vision prncessor for the location of anv ohiects that
have been classified as a wrench.

The vision svstem reports the location and orientation of a

wrench (if there is one) in its field of view bv sending an
appropriate message to VAL. Note that Auring the time the vision
gsvstem is locating and identifying ohjects, VAL is free to comnlete
other tasks. This overlanping mode of cneration minimizes the
effect of vision system processing on robot cvcle times.

In the final step of the task, VAL:

(a) Transforms the lnocation and orientation of the wrench from
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vision to rohot coordinates using parameters defined Auring
calibration,

(b) Determines the location and orientation of a user defined
grip point. This feature allows a wide range of objects to
be picked up in a reliable fashion.

(c) Checks with the VS-100 to see whether the robot grinper will

have clearance to pick up the part at the grip location.
(d) Positions and orients the gripper.
(e) Picks up the wrench and places it in the bhin,

Even a simple task like that described ahove reacuires significant vision
processing capability. VAL has been vrogrammed so that only a few,

high-level, vision commands are needed to access information ftom the Vg

processor and to control its complex image processing and nattern
recognition overations. This capability frees the VAL user to
concentrate more on the important control aspects of a vision-aided
task.

1.2 OVERVIEW OF THE MANUAL

The manual covers the theorv, operation, maintenance, installation, and
user aoplication of Univision. Chapter 2 1is a cooy of the VS~-100
processor reference manual which describes the setup and overation of
the vision system anA its peripherals. Chapter 3 is a supplement to
"Users Guide to VAL" that describes the new VAL commands used for
interroqation and control of the vision system. Chapter 4 is a user’s
guide to Univision which covers (1) practical considerations in setting
up and using a Univision system; (2) setup of the camera system; (3)
ingtallation of the Univision Interface Kit and start-up procedures; (4)
vision and vision-to-rohot calibration; (5) orototype training; (6)
computing object to robot transformations: and, (7) applicatinn
programs., Chapter S contains an overating manual for the cameras (either
TN-2500 or MIC 22) used in the application. Chapters 6, 7, 8 cover the
spare parts list, mechanical Arawings and electrical Arawvings
respectively. . '

Three sections are included in the Anpendix. Appendix A is the
diagnostics manual for the VS-100 descrihing use of the diagnostic
software and other debugging procedures needed to isolate failures in
the VS-100 system. Appendix B describes in Aetail the hardware and
software protocols used in the interorocessor communications interface.
Aopendix C is a copy of an applications note covering lens selection for
the TN-2500 and TN-2200 (same sensor as the MIC-22) General Electric
camera sensors.

1.3 FUNCTIONAL SPECIFICATION

Parts Recognition:
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Maximum numher of trained orototypes resident in
the system at a given time 9

Maximum number of objects that can be recoqnized

in the field of view 12
Reliable parts recognition requires adequate image contrast and
requires that the vart silhouettes do not merge.

Vision Sensor Resolution:

MIC 22 1 Part in 128 of Camera Field of View
G.E. TN-2500 1 Part in 244 of WiAth of Field
1 Part in 248 of Height of Field
Location and Orientation Measurement Accuracy
(Ignoring effects of parallax, and rohot vision calibration errors)
Location Equal to or Better Than Vision Sensor Resolution

Orientation Denendent on Object and on the Orientation
Feature Selecteqd

Environmental:

Camera w/o Enclosure o
Amhient Temp 0-50 C
Humidity 90% Max Non-Condensing
Vision Processor _ o
Ambhient Temp 0-46 C
Humidity 90% Max Non-Condensing
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Part 3:

Interface Software Descriptions (19)
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This document attempts to describe all of the improvements that Univisjion
VAL-II has compared to Univisionl VAL-I.

Mditions:

U.blink.blob - This routine will allow the user from the VAL keyboard
to outline the selected blob with either a wh.:e or a
black border. This routine can be very helpful in
determining which blob the vision system is refering to.

U.Boot - Allows the VAL-II user to restart the vision system from the VAL-I
keyboard. It is a destructive restart in that it will delete all
prototypes. However, it can save the user from having to reload t
vision system software from tape. .

U.Delete.Blob - This routine will allow the user to delete blobs from the
blob descriptor area. This will save vision system memory
allowing more trainings per prototype.

U.Erase - This routine will erase the text overlay, this will allow the
user to see a clear unobstructéd digitized picture.

U.Recognize - This routine will compare all of the known prototypes to
to the specified blob and return the prototype id number
that best fits the blob. The routine will also return
the difference from the best fit, and the difference to
the second best fit.

U.Raster.Line - Allows the user to examine each line on the vision system
to determine which pixels are on or off.

Overall Improvements-

1. By selecting the fast option VAL-II can process other information
while the vision system is processing data. Upon completion VAL-I:
can readdress the vision system to get the processed data.

-

2. Overall the user has more options when analyzing the vision picture

Changes-

Findheap- Now is U.WHERE.ARE.YOU.PROTO. Information is contained in
array element {0].

Train- Handled by U.TRAIN.BLOB. User can now use teach pendant to
train prototypes.

VSTORE, VLOAD- Punctions handled by U.SAVER, however, U.SAVER does not
preserve switch settings, and orientation features.
U.SAVER uploads the information into an array then the

user must store the array to disk as a series of real
values. U.SAVER will allow the user to delete prototype

Not Implemented-

Grip functions.
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Routine: U.Boot

Description:

This routine will allow the user to boot the MIC vision system. CAUTION:
during a reboot all prototype information will be erased. This routine has
been provided for use when the vision system hangs.

Usage:

exec boot
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Created: Sept 8, 1985
Revision: 1.0

Routine: U.Blink.Blob
General Description:

This diagnostic routine will aid in locating blobs by outlining them with a
white or a black border.

Variables Description:
u.blobnum - This parameter must be set by the user before calling this
routine. :

The leqal values range from one to the number of blobs that
are currently on the display screen.

u.color - This parameter must be set by the user before calling this
routine.

The variable has two legal values, zero and negative one.

If the variable is set equal to negative one, the outline is
drawn in bright white.

If the variable is set egqual to zero, the outline is drawn in
black.

s.error - This variable indicates, in a logical fashion, the result of
the execution of the routine. If it returns TRUE, it indicat:.
that an error was detected by the vision system. The actual
error code will be found in s.system.error. If it returns as
FALSE, the routine completed with out an error.

s .message{] - Reserved for éystem use.

s.numbytes - Reserved for system use.

s.nupword s - Reserved for system use.

s.system.error - This variable contains the error code that is returned from
the vision system. It should be referenced when the variab)
s.error indicates that a problem occured with the routine.
If s.error is FALSE, this variable will be equal to zero.

Subroutine Usage:
U.Blink.blob directly calls:

S.transfer .message
S.get .message

Usage Example:
«Program Test

1 3 S S S S S S S S A E NS E S e RN R R S S SN E SN R EEE N E N NSNS SRS R ENENSERS

2:= This program will flash a blobs' border white and black until
3;= the user strikes the <REC> key on the teach pendant
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4 PROMPT "PLEASE ENTER THE BLOB NUMBER TO BLINK --> *,S.BLOBNUM
. 2 TYPE "PRESS <REC> ON THE PENDANT TO STOP"
DO
[ 7 U.COLOR=-~] ;SET COLOR TO WHITE
8 CALL U.BLINK.BLOB; TELL VISION TO MAKE BORDER WHITE
9 IF S.ERROR THEN
10 TYPE "ERROR: HALTING®" ; STOP IF AN ERROR
11 RALT
* 12 END
13 FOR INDEX = 1 TO 500
14 END
15 U.COLOR=0 ;SET COLOR TO BLACK
16 CALL U.BLINK.BLOB ;TELL VISION TO MAKE BORDER BLACK
17 IF S.ERROR THEN
18 TYPE "ERROR: HALTING" ;STOP IF ERROR
19 HALT
20 END
21 UNTIL PENDANT(1) BAND 1 == ]
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Routine: U.Change.camera

General Description:

This routine will allow the user to select the camera that will be used.

Variables Description:

u.camera - This variable must be set by the user before this
routine is called. It must contain a number between

one and four. (inclusive) The number that this variable
contains will be the new camera number.

s.error

s .messagelf)
S.numbytes
s.numwords

This variable indicates, in a logical fashion, the result of
the execution of the routine. 1If it returns TRUE, it indicate:
that an error was detected by the vision system. The actual
error code will be found in s.system.error. 1If it returns as
FALSE, the routine completed with out an error.

Reserveu for system use.
Reserved for system use.
Reserved for system use.

s.system.error - This variable contains the error code that is returned from

the vision system. It should be referenced when the variable
s.error indicates that a problem occured with the routine.

If s.error is FALSE, this variable will be equal to zero.

Subroutine Usage:

U.Change.camera directly calls:

s.transfer.messaqge
s.get .message

Usage Example:

.program usage
U.camera=}]
CALL U.change.camera
CALL U.take.picture
FOR delay=1 TO 500

OOV EWN -

10

END

U.camera=2
CALL U.change.camera
CALL U.take.picture
FOR delay=] TO 500

END

exec usage,-~-1
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Routine: U.Delete.Blob
General Description:

This routine will remove a blobs®' features from the MIC vision system.
(It does not delete a prototype.)

Vvariables Description:

u.delete.blob.num - This variable must be set by the user before calling this
routine.

s.error - This variable indicates, in a logical fashion, the result of
the execution of the routine. If it returns TRUE, it indicates
that an error was detected by the vision system. The actual
error code will be found in s.system.error. If it returns as
FALSE, the routine completed with out an error.

s .message(] - Reserved for system use.
s.numbytes Reserved for system use.
s .numword s Reserved for system use.

s.system.error - This variable contains the error code that is returned from
the vision system. It should be referenced when the variable
s.error indicates that a problem occured with the routine.

If s.error is FALSE, this variable will be equal to zero.

Usage Example:
To remove blob descriptor 2 from the vision system

«DO U.DELETE.BLOB.NUM=2
.EXEC U.DELETE.BLOB
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Routine: U.Erase
General Description

This routine will erase the any text or graphic overlays on the screen. The
routine does not erase the current picture in the buffer.

Variables Description:
s.error - This variable indicates, in a logical fashion, the result of
the execution of the routine. If it returns TRUE, it indicates
that an error was detected by the vision system. The actual
error code will be found in s.system.error. If it returns as
FALSE, the routine completed with out an error.
s.message[] ~ Reserved for system use.
s.numbytes - Reserved for system use.
s .numwords - Reserved for system use.
s.system.error - This variable contains the error code that is returned from
the vision system. It should be referenced when the variable
s.error indicates that a problem occured with the routine.
If s.error is FALSE, this variable will be equal to zero.
Subroutine Usage:
Erase directly calls:

S.transfer.message
S.get.messaqge

Usage Example:

.Program Demo
1 Call U.erase; Erase vision screen to make look good.
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Routine: U.Initvision

General Description:

This routine will initialize the communication software. It will also set
default values for other the other subroutines. This routine must be called
before any other communication is attempted.

Variables Description:

Setup Section:

U.blobnum - Initialized value is one. (Set primary blob)

U.color - Initialized value is negative one. (Color= white.)
U.expected .shapes ~ Initialized value is nine. :

U.fast - Initialized value is zero. (Slow Picture)

U.new.picture - Initialized value is zero. (No picture)
U.numblob.id - Initialized value is negative one. (Identify all)
U.picture.fast - Initialized value is zero. (Slow Picture)
U.camera - Initialized value is one.

Variables Section:

S.error -

S.exp -
s.fraction -
s .messaqe(]
s.numbytes
S .numwords -

s.system.error

Subroutine Usage:

Initvision directly calls:

This variable indicates, in a logical fashior, the result of
the execution of the routine. 1If it returns TRUE, it indicates
that an error was detected by the vision system. The actual
error code will be found in s.system.error. If it returns as
FALSE, the routine completed with out an error.

Reserved
Reserved
Reserved
Reserved
Reserved

for
for
for
for
for

system
system
system
system
system

use.
use.
use.
use.
use.

- This variable contains

the vision system.

It

s.error indicates that

If s.error is FALSE,

S.transfer .message
S.get.message

Usage Example:

. +EXEC U.INITVISION
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Routine: U.Recognize
General Description:

This routine will compare all known prototypes to the specified blob number and
return the prototype identification number that corresponds to that blob. The
routine will also return a two match numbers that indicate how close the blob
is to first choice, and how close of a match it is to a second choice.

Variables Description:

s.diffl -~ This variable contains the difference from the specified blob
to the best matching prototype.

s.diff2 -~ This variable contains the difference from the specified blob
to the next best prototype.

CAUTION: If the values contained in s.diffl and s.diff2 are very close, this
indicates that the vision system may not always correctly
differentiate between the two prototypes. To correct this requires
further training of both of the prototypes.

s.error - This variable indicates, in a logical fashion, the result of
the execution of the routine. If it returns TRUE, it indicates
that an error was detected by the vision system. The actual
error code will be found in s.system.error. If it returns as
FALSE, the routine completed with ocut an error.

s .messagel] Reserved for system use,

U.numblob

This variable must be set by the user before calling this
routine. It contains the blob number that you want compared
to all of the known prototypes.

Reserved for system use.
Reserved for system use.

s .numbytes
s.numwords

s.proto.id ~ This variable contains the ID number of the prototype that
best matches the specified blob number.

s.system.error ~ This variable contains the error code that is returned from
the vision system. It should be referenced when the variable
s.error indicates that a problem occured with the routine.

If s.error is FALSE, this variable will be equal to zero.
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Routine: U.Reprocess.picture

General Description:

This routine will instruct the vision system to reanalyze the current image.

Variables Description:

s.blob.count -

s.error -

s .message(] -
S.numbytes -

s .numwords -

u.fast -

Upon completion of the routine "Take.picture” this variable
will contain a count of the number of blobs that are in the
picture. The count is not always equal to the number of
obiects but rather is the number of connected regions in
the imaqge.

This variable indicates, in a logical fashion, the result of
the execution of the routine. If it returns TRUE, it indicates
that an error was detected by the vision system. The actual
error code will be found in s.system.error. 1If it returns as
FALSE, the routine completed with out an error.

Reserved for system use,.
Reserved for system use.
Reserved for system use.

This parameter must be set by the user before calling the
routine.

u.fast has two legal values; zero or one.

If u.fast is set equal to zero, then the vision system

will take a slow picture. Slow means that the routine will
wait for the vision system to completely process the command
before proceeding.

If u.fast is set equal to one, then the vision

system will take a fast picture. The routine will finish
before vision completes all processing. Variable
s.blob.count will be equal to zero regardless of the number
of blobs that exsist in the image.

s.system.error - This variable contains the error code that is returned from

Subroutine Usage:

the vision system. It should be referenced when the variable
s.error indicates that a problem occured with the routine.

If s.error is FALSE, this variable will be equal to zero.

Reprocess.picture directly calls:

S.transfer.message
S.get . .message
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Rputine: U.Take.picture

Seneral Description:

This routine will instruct the vision system to take a picture of the current
field of view and process the image.

Variables Description:

s.blob.count -

sS.error -

s .messaqge()
s .numbytes
s.numwords

u.picture.fast

Upon completion of the routine "Take.picture” this variable
will contain a count of the number of blobs that are in the
picture. The count is not always equal to the number of
objects but rather is the number of connected regions in
the image.

This variable indicates, in a loaical fashion, the result of
the execution of the routine. If it returns TRUE, it indicates
that an error was detected by the vision system. The actual
error code will be found in s.system.error. If it returns as
FALSE, the routine completed with out an error.

Reserved for system use.
Reserved for system use.
Reserved for system use.

- This parameter must be set by the user before calling the
routine.

u.picture.fast has two legal values: zero or one.

If u.picture.fast is set equal to zero, then the vision system
will take a slow picture. Slow means that the routine will
wait for the vision system to completely process the command
before proceeding.

If u.picture.fast is set equal to one, then the vision
system will take a fast picture. The routine will finish
before vision completes all processing. Variable
s.blob.count will be egqual to zero regardless of the number
of blobs that exsist in the image.

s.system.error - This variable contains the error code that is returned from

ubroutine Usage:

the vision system. It should be referenced when the variable
s.error indicates that a problem occured with the routine.

If s.error is FALSE, this variable will be equal to zero.

U.Take.Picture directly calls:

S.transfer .messaqe
S.get .message

sage Example:

Program Test
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L U.picture.fast = 0; Set slow mode.
Call U.Take.picture: Ask the vision system to take a picture.
If S.error then; Examine the variable to see if a problem occured.
' Type "Bad Routine Error code is --> *,/d,s.system.error
:= The above line will display the error code and a short message.
Else
Type "Good Picture Blob Count is --> *,/d,s.blob.count
;= The above will happen if everything worked.
. End
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utine: U.Where.Are.You.Proto

neral Description:

is routine will analyze an image and return the coordinates of the centroid
a shape, along with an orientation measurement that can be used to create a
ansformation to locate an actual piece, The coordinates are returned in

its of pixels and it is the users responsibility to scale these pixels

to actual coordinates.

e orientation value is returned in radians and it must be converted to degrees
fore being used.

riables Description:

solor - this variable has two legal values, negative one and zero. If the user
sets this variable to negative one white shapes will be used. If the
the user sets it to zero the vision system will use black shapes.

a2xpected .shapes - this variable will tell the vision system how many matches
to allow.

fFast - this variable will tell the vision system whether or not the action is
to occur in a fast mode of operation or not. If the user selects fast
by setting this variable to one the user must recall this routine
with this switch set to zero to collect the data. ) /
AL ﬁl! et
iew.picture - this variable instructs the vision system to -1 repicture,
0 for previous picture and 1 for picture.
Dtmm o m B ffer _—
wmblob.id - this variable contains the number of prototypes to find, if
you want the vision system to locate all of prototypes set
this variable to -1.

’>lob.there[]) - this variable indicates in a logical fashion if the prototype
is in the field of view. 1If the prototype is in the current
picture this variable will be set equal to TRUE. If the

not in the field of view the variable will be

prototype is

set to FALSE. The element number is equated to the prototype

number.

s.error -

this variable indicates, in a logical fashion, the regult of the
execution of the routine. If it returns TRUE, it indicates that

an error was detected by the vision system. The actual error code

will be found in the variable s.system.error. If it returns a

FALSE, the routine completed without an error.

s.message(] - reserved for system use
s.numbytes - reserved for system use
s.nunwords -~ reserved for system use

s.orient.blob {] - Contains the anqular measurement of the prototype
whose number is the array offset.

s.system.error - This variable contains the actual error code returned
from the vision system. It should be referenced when
the variable s.error indicates that a problem occured
during the execution of the routine.
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If s.error is PALSE, this variable will be equal to zero.

s.xcenter.blob [] - Contains the value in pixels locating the prototype

whose number is the array offset, in the X direction.

s.ycenter.blob {}] - Contains the value in pixels locating the prototype

Example:

whose number is the array offset, in the Y direction.

For prototype one in the picture, its X location will be found

in variable S.xcenter.blob[l], the Y location will be found in
variable S.ycenter.blob(l], and finally the orientation will be
found in S.orient.blob{l]. The number found between the brackets
is the prototype number. If an unidentified shape is in the
field of view, then it will be referenced by array offset zero.
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POSSIBLE VALUES FOR S.SYSTEM.ERROR
Value Meaning
Corrective Action for the following errors:
Examine the variables that you are required to set.
Reset the bad one to a legal value.
1 Bad Parameter has been passed to the routine. The Routine
has not executed.
Corrective Action for the following errors:
None, a zero indicates a good run.
0 The routine ended with out ahy error detected by the vision
system.
Corrective Action for the following errors:
Reattempt the communication with the vision system,
Attempt to relnad both the vision system and the VAL-II system.

if this error persists please note all actions that lead up
to this and contact Unimation Inc.

-1 Not yet implemented. The command number passed to the vision
system is not defined.
-3 The command number is out of range.
-5 - The argument passed to the vision system is out of range.
-7 The command number is reserved for future use.
=17 The variable name passed to the vision system was not recieved
properly.
-21 Bad Restart operation, this error should only occur during
the execution of the boot routine.
-23 Vvision System restarted during command.
~-129 Error from User routine.
-131 User routine number out of range
~-133 Buffer to small for return.
-13S No User.

Corrective Action for the following errors:

Rename the one of the prototypes.
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-19 Duplicate prototype name.
Corrective Action for the following errors:

This collection of errors most probably result from specifying
an jllegal blob number.

-9 Blob is not active.
-11 Blob Specification is illegal.
-13 No Rlob found.

Program: U.Saver

Instructions/Usage

U.Saver is a menu driven program that allows you to delete prototypes from the
vision system, copy them from the vision system to val, and copy them

from val to the vision system. It deals with only prototype information not
orientation features, or other switches.

To upload prototypes select option 1, then enter the prototype number.
Upon completion, store the real variable PROTOINFO[]) to disk.

To download first load the real variables from disk and then execute the
program. Select option 2 and the prototype will be restored.

To delete a prototype select option 3, then enter a 1 to confirm,
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Program: U.train.blob

Instructions/Usage

U.Train.blob will allow you to add in a blobs description to a prototypes
‘ description. (this is called training) It will use the primary blob.

The user simply enters the prototype number and then the number of training
times. By depressing <REC> on the pendant a picture will be taken, and the blob
will! be added into the prototype.

Note: This program calls the user routine u.take.picture and sets the flag
u.picture.fast to zero (slow mode). This routine will not function
reliably unless the vision system has been initialized.
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Appendix B

VRS Software Program Listings

This Appendix contains the software program listings for

the vision-robot system (VRS). The listings are grouped

together by the tasks in which they were accomplicshed.

A miniature Table of Contents of the program listings

follow:
Table of Contents

Task Page
1. Static Vision Servo Control Program Listings 125
vision.menu ...... e s e e e e s e et s e 126
vision.robot.cal ........ C e e e e 128
prototype.train .......... ., I I B |
blob.store.or.delete ...t evvtvnsnnnas 132
VisSion.demoO.MEeNU .« .« oo eoteutonoosososssee 133
ident.blobs ... e e e 134
locate ...ttt ettt st eecettetnsonas 135
ident.blob.point.center .......... 136
camera.center.offset ... 137
point.center ..... Cet et ... 138
track.targ ...ttt c e e 139
center ... uieaeon s et et ettt e 140
track.targ.scat ....cc00 e e e c e s e e e e s e 141
CeNnter.SCAt .+ .eovevrseorsessroonsscnoneas 143
L= 2= - ¥ o -3 + SN e 145
search.track .... ittt tioanreonocens 147
search.center ....cccetteeesnosesocencs 149
2. Dynamic Vision Servo Control Program Listings .... 152
track.targ.dcat ....civee ittt caonns 153
center.dcat ....eccctr vttt st 155

124




-3 - T T W r ";"( g T T T T T T S T T~ o N

M e e -

Task 1: Static Visual Servo Control Program Listings
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- rl visiaon.menu
+PROGRAM vision.menu

13
2 i THIS PROGRAM PROVIDES A MENU FOR SELECTING VARIOUS OPTIONS
3 7 WHEN USING THE VISION SYSTEM. MOST OF PROGRAMS AVAILABLE.,
4 7 ARE SYSTEM PROGRAMS FROM THE UNIWISIONi.PG FLOPPY DISK.
3 7 THERE ISN'T MUCH DOCUMENTATION AVAILABLE FOR THESE PROGRAMS,
g 5 HOWEVER THEY ARE FAIRLY SIMPLE AND USER FRIENDLY.
8 7 THE VISION/ROBOT SYSTEM MUST BPE INITIALIZED BEFORE EXECUTING
g 7 ANY PROGRAMS.
10 7 THE VISION/ROBOT INTERFACE 1S INITIALIZED BY CALLING
11 7 UJINITUISION,
12 9
13 7 #Rantmtt i natn sttt nttbARNINGH 53 35 3303 35 35 3030 3 3646 4 96 3 46 98 34 3 3 2 3
14 7 » #
15 7 % ONCE THE INTERFACE HAS BEEN INITIALIZED FOR THE #
16 ¢ # IST TIME, THE YISION/RQOBROT SYSTEM MUST BE CALIBRATED. #
17 7 = ) #
18 7 ARt n Rt r R RN AR BE AR B R E BRI RSN RS
19 ¢
20 ; ===zzcz==zz==c=z= CAUTION Tsr*szTEzsESToSzEsmSosSEmnoc
21 3}
22 7 IF THE CAMERA IS EVER MOVED RELATIVE TO THE ROBOT, THEZ
23 7 REFERENCE FRAME FOR OBJECTS VWIEWED BY THE VISION SYSTEM
24 7 WILL ALSA PE MOWED. IN QRD=ER FOR THE ROBOT TO MOUVE TO
2% 7 LOCATIONS DEFINED BY THE VISION SYSTEM, A RELATIVE
268 ¢ TRANSFROMATION MUST BE DEFINED WHICH RELATES THE REFERENCE
27 i FRAME QF THE UISION SYSTEM TO THAT OF THE ROBOT;
2B 7 vision.robot.cal WILL ACCOMPLISHY THIS TASRK.
29 3
3() ::::::::::======::=========‘_'1::::2::::::::::::::::::
31 7
32 i0 TYPE /B, /CZ: beeess the screen & skips 2 lines
33 TYPE "Bt dit ittt s et td et ettt taeattatttsrs”
3¢ TYPE "% #"
335 TYPE "+ WELCOME TO AFIT’S VISION LAB L
36 TYPE "# #"
37 TYPE "#atdaddtdsttttattttdadsattsttittttdrdtatnrainn”
38 num = O, initialize parameter
39 TYPE /C2, /B
40 TYPE " THE FOLLOWING OPTIONS ARE AVAILABLE "
41 TYPE /C1
42 TYPE 1. INITIALIZE VISION/ROBOT COMMUNICATION *, /C1
43 TYPE ¢ 2. VISION-TO-ROBOT CALIBRATION ", /C1
44, TYRE " 3. PROTOTYPE TRAINING *y /C1
45 TYPE 4. PROTOTYPE STORAGE AND DELETION *, /Ct
4G TYPE * 5. VISION DEMO ", /C1
47 i
48 TYPE “###84#taitt ittt iRttt ittedte sttt nttitttetesnenise"
49 TYPE "+ #"
S0 TYPE "# ———me—meewe 7 WARNING (==—~r—cemmea—- »"
31 TYPE "% *"
52 TYPE " BEFORE EXECUTING OPTIONS 3:4, OR S, #"
33 TYPE "= OPTIONS 1 AND 2 MUST BE ACCOMPLISHED #"
54 TYPE "% ®"
55 TYPE "%ttt laattrittsttattettettetttattstsrennnrn”, /C1
56
57 TYPE "PLEASE ENTER THE NUMBER OF THE OPTION *
S8 PROMPT " Y¥0U DESIRE ~-=> ", num
59
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63
G4
65
66
67
68
69
70
71
72
73
74
735
76
77
78
79
80

1

82
€3
84
g5
86
87
g8
89
90
+END

~e wa ws we =@

o e b et e fe TN

CASE INT(num) OF

VALUE 12

CALL u.initvision; INITIALIZE WISION/ROBOT SYSTEM

TYPE /C2Z2

PROMPT “=z=z=:> INTIALIZATION COMPLETE, PRESS <RETURN> TO CONTINL
VALUE 2:

CALL vision.robot.cal; PROGRAM TO CALIBRATE SYSTEM
VALUE 33
CALL prototvPe.train; USE THIS TO TEACH THE WISION SYSTEM
;7 DIFFERENT OBJECTS
VALUE 41
CAL'. blob.store.or.delete; THIS WILL STORE OR DELETE A
7 PROTOTYPE .INTO/FROM THE VISION SYSTEM’S
7 MEMORY.
UALUE 5: :
CALL vision.demo.menu; THIS EXECUTES THE VISION DEMD
ANY
TYPE “THAT NUMBER IS NOT AN OPTION PLEASE TRY AGAIN"
GATD 10
END

GOTO 10
RETURN
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Pl vision.robot.cal
« PROGRAM vision.robot.cal

1

CONGOURDBWN

25

NE WE NE WP e %O MO WG WE WS v NG WE WA WO %O wy YA VUG WS VR »
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8 wg s

THIS PROGRAM EXECUTES THREE SYSTEM PROGRAMS,

THE FIRST PROGRAM, u.boot, REBOOTS THE VISION SYSTEM,
THIS HAS THE EFFECT OF DELETING ALL THE PROTOTYPES FROM
MEMORY. THEREFORE NEW PROTOTYPES MUST BE TRAINED.

THE SECOND PROGRAM, u.K.teach, DETERMINES THE

SCALE FACTOR (s.K.scale) USED IN CALIBRATING

THE VISION-TO-ROBQOT SYSTEM. THIS PROGRAM

RELATES THE CAMERA‘S CHARACTERISTICS (ie. FOCAL

LENGTH) TO CAMERA PIXEL SIZE. IT DEFINES THE RATIO OF
THE DISTANCE BETWEEN 2 LOCATIONS IN ROBOT COORDINATES
TO THE DISTANCE IN PIXEL COORDINATES.

A GOOD RANGE FOR s.K.scale IS APPROXIMATELY
14 s.K.scale < 2
where the units are in mm.

THE THIRD SYSTEM PROGRAM CALLEL IS u.frame.teach
WHICH ESTABLISHES THE ROBOT/VISION WORK FRAME.

CALL u.boot; RERBODOT "+ ISIGN SYSTEM

TYPE /B, /CB

TYPE "==x==szz=z=z=zs=zzzzz=zscz=z=zszeozssccszszccsgczgzss=s==szc=V
TYPE "I P
TYPE "t ThE FOLLOWING PROGRAMS WILL ESTABLISH THE U
TYPE "| ROBOT-VISION WORK AREA P
T‘{PE "' ‘ll
TYPE "=s=z===zsc==z=zss===zozzssczsz=zszxzzcs=zzrzczsz=s=szczsxrz=="
TYPE /C2

TYPE " STEP 1 ~-» SELECT THE o WIEW CURRENT CAMERA, OPTION", /C1
TYPE " STEP 2 ~-» FOCUS THE CAMERA USING THE CALIBRATION"
TYRE " DISK AS A GUIDE", /Ct

PROMPT "====== PRESS <{RETURN>» TD CONTINUE ======"

CALL u.K.teach:; SYSTEM PROGRAM USED TO DETERMINE s.K.scale

TYPE /C1, /8

TYPE "A GOOD VALUE FOR S.K.SCALE IS APPROXIMATELY", /Ct
TYPE " 1 < s.K.scale £ 2 “y /C1

PROMPT "====== PRESS <RETURN> TO CON3IINUE ======z"
CALL u.Framé.teach: SYSTEM PROGRAM TO WORK FRAME

TYPE /B, /Ci

TYPE V"==z===zs2=szs=zsscsss=zsasszscsssssscesrscszsz=s=zas=z=="
TYPE " | K
TYPE “1 NOW A CHECK OF THE VISION-TO-ROBOT U
TYPE "1 TRANSFROMATIDN WILL BE VERIFIED AND e
TYPE "{ MODIFIED. IF NECESSARY. -
TYPE *| "
TYPE Y=zsz=zxsc=zs=zszssszscccoc=ssp=gsnpssssssserosxsnssm=s?

TYPE /B, /C1
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54
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2
73
74
75
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78
79
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81
82
e3
84
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86
87
88
89
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91
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109
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MOVE #s.safg.Positinn3 MAKES SURE ARM IS OUT OF CAMERA'S FOV

TYPE "== PLACE THE CALIBRATION DISK IN THE APPOXIMAT
' M4 E "
TYPE "== CENTER OF THE CAMERA'S FOV ::“' /C1

PROMPT "=====z PRESS <RETURN>» TO CONTINUE =e=z=z=z=z»
TYPE /C1

THE FOLLOWING WILL INITIALIZE PARAMETERS REQUIRED IN
THE REST OF THIS PROGRAM,

X.aff = O
Y.0fFf = 0
2.0FfF = O
Xc = 0
yc = 0
xc = 0

CALL u.take.rpicture; TAKE A PICTURE

CALL u.recoanizer IDENTIFY OBJECTS

X = s.Proto.id

CALL u.where.are.vou.rroto; ANALIZES IMAGE AND PROVIDES
r ITS x & v CENTROID POSITIONS

xcent = s.K.scale*s.xcenter.bloblx]

vcent = s.K.scale#*s.vcenter.blobixl

SET center = camera.:TRANS(xcent, vcent, 0, O, =80, 0)

camera IS THE THE RELATIVE TRANSFROMATION

DETERMINED WHEN u.frame.teach WAS EXECUTED.

SPEED 100

MOYE center

TYPE Y“=s==zzcs2s=zzzs=sscoc=ssszsszsazssxsssssomaszxz!
TYPE " K
TYPE "1 LOOK AT THE POSITION OF THE ROBOT 1"
TYPE "1 POINTER TO THAT OF THE CALIBRATION "
TYPE "1 DISK. IF IT IS NOT IN THE CENTER |I"
TYPE "I ANSWER THE FOLLOWING QUESTIONS "

TYPE "I '

TYPE “"===zz=z=s==sszs=zzzzzxszz=====s==s===z==z=zs=z====", /@B, /C}

TYPE “THE POINTER IS OFF CENTER BY + or -~ _______ mm’s"
PROMPT " IN THE ‘X’ DIRECTION --3", x.off

TYPE /C1 ,

TYPE "THE POINTER IS OFF CENTER BY + or - ______ mm's"
PROMPT " IN THE ‘Y’ DIRECTION -->", vy.off

TYPE /C1

TYPE "THE POINTER IS TOO FAR ABOVE/BELOW THE TABLE BY *“
PROMPT " + 0T = mmem mm’s ==>", z2.0fFf

TYPE /C1

CALL camera.center.offset; THIS WILL CORRECT THE OFFSET
SET spot = cameral.TRANS(xcent, vcent, 0, 0, =90, 0)
SPEED 25

MOVE srPot
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12

129
130
131
132
133
134
135
13€
137
138
139
140
141
142
143
144
1453
14G
147
148
149
150
151
152
153
154
155
156
.END

-

TYPE /B

TYPE "==)> CHECK THE POINTER W.R.T. THE DISK AGAIN <==z"
TYPE /C1

TYPE "THE POINTER IS OFF CENTER BY + OP = —eeeoo mm’s"
PROMPT " IN THE 'X’ DIRECTION =-->", xc

TYPE /C1

TYPE “THE POINTER IS OFF CENTER BY + or - ______ mm’‘s"
PROMPT " IN THE ‘Y’ DIRECTION -=>", ve

TYPE /C1

TYPE "THE POINTER IS TOO FAR ABOVE/BELOW THE TABLE BY"
PROMPT " 4+ 0T = e mm’s =-=->", zc

TYPE /C1

CALL camera.center.offset

SET spot = cameral!TRANS(xcent, vcent, 0, 0, -90, O)
SPEED 25

MOVE spPot

TYPE *"THIS SHOULD BE CLOSE ENQUGH, THE SYSTEM 1S5 NOW"
TYPE * READY FOR YOUR CONWIENCE!!tP18101®

TYPE /C1

PROMPT "======)» PRESS <RETURN> TO CONTINUE {======"
READY

CALL vision.menu; GO BACK TO MAIN MENU
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Pl Prototype.train
. PROGRAM Prototyepe.train

b3
3
4
<)
6
7
g8
g
10

“a w8 wE WD WE w4 WH MO VO NO NS

THIS PROGRAM CALLS u.train.blob TO TEACH THE VISION

SYSTEM THE VARIOUS PROTOTYPES THE USER 1S INTERESTED
IN RECOGNIZING.

FOR THE VISION DEMO OPTION. PROTOTYPES 1 AND 2 SHOULD BE
TRAINED AS A CIRCLE AND A RECTANGLE. RESPECTIVELY. THE REASON
FOR THIS CONSTRAINT LIES IN THE FACT THAT THE VISION

DEMO HAS PROGRAMS WHICH ARE BASED ON THE PROTOTYPES BEING

DEFINED WITH; 1 -- CIRCLE, 2 -- RECTANGLE.
TYPE /C11
TYPE * ===> NOTE <==%= "

TYPE /8., /C1 .
TYPE " IF THE USER IS TRAINING OBJECTS FOR THE VISION DEMOY

TYPE /C1

TYPE "==> PROTOTYPE 1 SHOULD BE A CIRCLE <=-", /Ci
TYPE "==> PROTOTYPE 2 SHOULD BE A RECTANGLE <==*, /C3
PRGMPT "======> PRESS <RETURN> TO CONTINUE {======"

CALL u.train.blob
CALL vision.menus GO BPACK TO MAIN MENU
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+Pl blob.store.or.delete
. PROGRAM blob.store.or.delete

DONOOUL»LWRN -

e VB NGO WP NP US TP NG WA WS UR WS WS we WA Wy -

THIS PROGRAM IS USED WHEN STORING OR DELETING PROTOTYPE
INFORMATION INTO/FROM THE VISION SYSTEM'S MEMORY.

u.saver IS A MENU DRIVEN SYSTEM PROGRAM WHICH IS CALLED
WHEN THE USER WISHES TO COMPLETELY DELETE A PROTOTYPE FROM
THE VISION SYSTEM., OR TO COPY THEM FROM THE VISION SYSTEM
TO VAL II AND VIS VERSA. u.saver DEALS ONLY WITH PROTOTYPE
INFORMATION, NOT ORIENTATION FEATURES, OR OTHER SWITCHES.

u.delete.blob WOULD BE USED IF THE USER WISHED TO
DELETE ONLY A PROTOTYPE'S FEATURES FROM MEMORY.

u.boot REBOQTS THE VISION SYSTEM. THIS HAS THE EFFECT OF
DELETING ALL THE PROTOTYPES FROM MEMORY.

15 TYPE /8. /C11
TYPE "THE FOLLOWING OPTIONS ARE AVAILABLE", /Ci

TYPE " 1. STORE, RECALL. OR DELETE A PROTOTY¥PZ ", /C1
TYPE " 2. DELETE ONLY A PROTOTYPE'S FEATURES ", /Cl1
TYPE * 3. DELETE ALL PROTOTYPES FROM MEMORY *“., /Ci
TYPE " 4. GO BACK TO THE WISION LAB MAIN MENU". /C1

TYPE "PLEASE ENTER THE NUMBER OF THE OPTION *
PROMPT " ¥0OU DESIRE --> ": num

CASE INT{(num) OF

VALUE 13
CALL u.saver; STORE, COPY, OR DELETE A PROTOTYPE
VALUE 2.
TYPE /B
TYPE “ENTER THE NUMBER OF THE PROTOTYPE WHOSE FEATURES "
PROMPT " YDOU WISH TO DELETE --> ", u.delete.blob.num
TYPE /Ct
CALL u.delete.blob; DELETE A BLOB’S FEATURES
YALUE 3.3
CALL u.boot; DELETE ALL PROTOTYPES FROM MEMORY
YALUE 4:
CALL vision.menu: GO BACK TO MAIN MENU
ANY
TYPE “THAT NUMBER IS NOT AN QOPTIOUN, PLEASE TRY AGAIN"
GOTO 15
END

CALL vision.menui GO BACK TO MAIN MENU
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. Pl vision.demo.menu
. PROGRAM vision.demo.menu
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THIS PROGRAM PROVIDES A

MENU FOR SELECTING VARIOUS CHOICES

OF VISION DEMOS EACH TIME THE MENU PROGRAM
. 1S EXECUTED,
THE VISION/ROBOT INTERFACE IS INITIALIZED BY CALLING A ?

SYSTEM PROGRAM, u.initvision, (LOCATED ON THE UNI
FLOPPY DISK). ViSTONt PG

1¢

CALL u.:initvision; INITIALIZE THE VISION/ROBOT INTERFACE
u.new.ricture = 1; SYSTEM LOOKS AT CURRENT PICTURE
Uu.numblob.id
G.numblob = 17 BLOP 1 WILL BE COMPARED TO ALL

KNOWN PROTOTYPES

set this number to the max number gf
of blobs exrectea in the camera’s FOU,
u.rPpicture.fast = 07 set slow moae

u.blobnum

]
)
v we we ws N

TYPE /B, /C3; BEEPS THE SCREEN AND SKIPS 3 LINES

BRI EE T TR ETTFETE T F L FETREE F R PR g g g gaor g ey

T\{PE ll* *“
TYPE “»  WELCOME TO AFIT’S VISION DEMO *
TYPE “# #

TYPE " #3ta 8L atntststttstttt Rttt ettt esientinttssets"

SPEED 757 robot speed is set tg 75% of its normal value
READY

TYog /Ci, /B

TYPE " THE FOLLOWING DEMOS ARE AVAILABLE "

TYPZT /C1
TYPE * 1., OBJECT IDENTIFICATION v, /C1
TYpE v 2. O0OBJECT IDENTIFICATION AND ROBOT POSITIONING “, /C1
TYPE * 3. DIRECT ROBOT POSITIONING ", /Ct
TYPE " 4, GO BACK TO THE VISION LAB MAIN MENU", /Ci
TYPE “PLEASE ENTER THE NUMBER OF THE DEMO “
PROMPT " YOU WISH TO VIEW ==-=> ", num
CASE INT(num) OF

VALUE 12

CALL ident.blobs:; PROGRAM T0O IDENTIFY BLOBS
VALUE 2:

CALL ident.blob.roint.center; PROGRAM TO IDENTIFY BLOBS,
; & DIRECTS THE ROBOT TO MOUE TO THE CENTER OF THE
; LARGEST BLOB IN THE CAMERA’S FIELD OF VIEW (FOY)
VALUE 3: )
CALL point.center; DIRECTS THE ROEQT TO MOVE TO THE CENTER
; TO THE LARGEST BLOB IN THE CAMERA’S FOV.

VALUE 4:
CALL vision.menu; GO TO MAIN MENU
ANY
TYPE “THAT NUMBER IS NOT AN OPTION PLEASE TRY AGAIN*
GOTO 10
END
PROMPT "====== PRESS <RETURN> TO CONTINUE ==zze=="
GOTO 10
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ident.blobs
«PROGRAM ident.blobs
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THIS PROGRAM CALL A SYSTEM PROGRAM, u.take.ericture.,
WHICH ASKS THE VISION SYSTEM TO TAKE A PICTURE.
THIS PROGRAM PROVIDES THE NUMBER OF BLOBS IN THE
CAMERA'’S FOVU,

AFTER COMPLETION OF THIS PROGRAM, u.recoanize, IS
CALLED TO IDENTIFY THE OBJECTS OBSERVED WHEN THE LAST
PICTURE WAS TAKEN.

CALL u.take.picture; ASK THE VISION SYSTEM TO TAKE A PICTURE
nb = s.blob.count
TYPE /B, /C1
IF s.error THEN :

TYPE "BAD ROUTINE - ERROR CODE IS -->", /D, s.svstem.error
ELSE

TYPE "GOOD PICTURE - THERE ARE "“» /D. nb

TYPE /B, "BLOR(S) IN THE CAMERA‘S WIEW!"
END
CALL u.blink.blob:; OUTLINE THE BLOB IN WHITE
CALL u.recoanize; IDENTIFY THE OBJECTS
TYPE /B
TYPE /C1., e e T ST P LT T L T L L2 L L L L L A
X = s.proto.ids SET NUMBER OF THE LARGEST PROTOTYPE

t IDENTIFIED.

IT SHOULD BE NOTED HERE THAT THE USER MUST PREVIOUSLY TRAIN
THESE OBJECTS, WITH THE APPROPRIATE NUMBER. TO THE VISION
SYSTEM. FOR EXAMPLE, OBJECT "1“ 1S TRAINED TO BE A CIRCLE
AND OBJECT 2 IS TRAINED TO BE A RECTANGLE.
ALSO IF AN OBJECT IS NOT RECOGNIZED BY THE SYSTEM

———— c.proto.id = 0 —=—==we———--

CASE INT(x) OF

GALUE O3
TYPE "+ I DON‘T RECOGNIZE ANY OBJECTS *"
VALUE 13
TYPE "+ THE LARGEST QOBJECT IS A CIRCLE XL
VALUE 2%
TYPE "# THE LARGEST OBJECT IS A RECTANGLE *"
END
TYPE g ey S F XX I 222 S22 S 2 LT L L L L L
TYPE /C1

CALL locate. ASK THE VISION SYSTEM TO GIVE THE -
: CENTROID POSITION OF THE OBJECT.
RETURN : *
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«Pl locate
«PROGRAM locate

13
{ 2 7 THIS PROGRAM CALLS u.where.are.vou.rroto TO DETERMINE
\ 2 i AN OBJECTS CENTROID AND ORIENTATION.
S 7 THE x & v COORDINATES ARE SCALED BY THE SCALE FACTOR, s.K.scale.
6 7 WHICH DEFINES THE RATIO OF THE DISTANCE BETWEEN 2 LOCATIONS
7 7 IN ROBOT COCRDINATES TO THE DISTANCE IN PIXEL COORDINATES.
g8 !
9 CALL u.where.are.vou.pProto
10 xcent = s.,K.scalex*s,xcenter.bloblxl
i1 veent = s.K.scale#s,vcenter.bloblxl
12 orien = 1BO#s.orient.bloblxJ/PI
13 TYPE “"THE ¥ COORDINATE OF THE CENTROID (in mms) IS", /D, xcent
14 TYPE /C1 -
13 TYPE “"THE Y COORDINATE OF THE CENNTROID (in mms) IS", /D, vcent
16 TYPE /C1
17 TYPE "THE DRIENTATION IS", /D, orien
18 TYPE /C2
19 RETURN
.END
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+Pl ident.blob.Poinv.center
.PROGRAM ident.blob.Point.center

1 7

2 7 THIS PROGRAMS CALLS VARIOUS PROGRAMS TO ENABLE THE

3 7 VISION SYSTEM TO IDENTIFY AN OBJECT AND PROVIDE

4 ; THE APPROPRIATE COMMANDS AND COORDINATES FOR THE ROBOT
S ¢ TO PODINT TO THE CENTROID OF THE OBJECT.

6 !

7 MOVE #s.safe.position; MOVE THE ARM TO A POSITION
8 v OUTSIDE THE CAMERA‘A FOU.

Q TYPE /B, /C2
10 CALL ident.blobs? VISION SYSTEM TAKES A PICTURE
i1 v IDENTIFIES BLOBS AND PROVIDES THE
12 7 OBJECTS X AND Y CENTROID POSITION.
13 CALL camera.center.offset’ THIS PROGRAM PROVIDES THE
14 7 CORRECTION FOR THE OFFSET

15 : BETWEEN THE OBJECT’S CENTROID
16 7 AND THE POSITION OF THE POINTER

17 3

18 : THE NENXT EYPRESSION DEFINES THE LOCATION OF THE QOBJECT
18  IN THE ROBOT REFERENCE FRAME.
20 SET spot = cameral:TRANS(xcent, vcent, O, orien, -20, 0)
21 SPEED 75
22 MOUVE spot; MOVUE ARM TO THE DESIRED LOCATION
23 RETURN :

.END

136




.Pl camera.center.ocffset

.PROGRAM camera.center.affseat
1

]

THIS PROGRAM SIMPLY PROVIDES THE CORRECTION FOR THE OFFSET

3 7 BETWEEN THE QBJECT’S CENTROID AND THE POSITION OF THE ROBOT
4 7 POINTER.
S 3
G SET cameral = SHIFT(camera BY x.o0ff+xc, v.off+vc, z.0ffF+2cC)
7 RETURN
.END
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.Pl Point.center
. PROGRAM Point.center
1 7
2 1 THIS PROGRAM IS BUILY FOR SPEED. IT SIMPLY
2 7 INSTRUCTS THE VISION SYSTEM TO TARKE A PICTURE. PY
4 7 CALLING u.take.picture. THE PROGRAM THEN IDENTIFIES
S 7 THE ORJECTS USING u.recoanize. AND FINALLY., THE T
G 7 OBPJECT’S CENTROID IS DETERMINED BY u.where.are.vou.proto. 1
7
8 10 MOVE #s.safe.pcsition; MOUVES ARM TO A POSITION
£ ; DUTSIDE THE CAMERA’S FOu.
1¢ CALL u.take.rPpicture; VISION SYSTEM TAKES PICTURE
11 IF s.blob.count ~ O THEN; CHECK FOR BLOBS IN FQU
12 CAci. uw.recosvtizesr IDENTIFY BLOBS
13 X = 3.Proto.:id
14 CALL u.where.are.vor.pProteo; PROVIDES QRJECT 'S CENTRCID
1% xcent = s.K.scalers.xcenter.blobix]
1E TYRE /C1
17 TYFE “THE ¥ COORDINATE OF THE CENTROID (in mms) IS", /D, xcent
1€ ycent = s.K.scale#s.vecenter.blonix]
19 TYPE "THE ¥ COORDINAYE QOF THE CENTROID (1n mms) IS", /D, vcent
oo orien = 18Cx*s,erient.bloblxl/PI
21 TYPE "CRIENTATION IN DEGREES IE", /D, orien
2z TYRE /C2
23 CALl camera.center.cffset
24 SET spot = camera:iTRANS(xcent, vycent, Q: orien, —-S0, Q)
:’5 ’
26 test = INRANCE (sPCot)
27 IF test -~ O THEN
26 TveD 2, JCL.0 " ==z WARNING «===", /CI
29 TYPE "THE QFPJECT 1S OUT OF THE ROBCT’S REACH"
30 TYPE " PLEASEZ MOVE THE OBJECT AND TRY AGAIN ", /Ci
31 PROMPT "==zz=z==x. PRESS <RETURN> TO CONTINUE <=s=s===="
3z Goro 1o
3z E._GE
34 SPEED 1040
= MOLE cpoY
3G =ND
27 cLcez
3E TYPE /B8, /C2
39 TYPE /B, "THERE ARE ND BLOPS IN THE CAMERA'S VIEW"
40 TYeE /C2
4 TYPE "PLEASE PLACE AN QORJECT ON THE TARLE "
47z TYPE "AND RERLN TRE PROGRAMY, /C2
43 END
44 RETURN
.END
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.Pl track.tars
.PROGRAM track.targ
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This preogsram exhibits the charateristics of a Static look-and-
move vwisual seruvo system during vision-robot svstem (VRS:) motion.

Before executins thic program, ensure that there aren’t anv
PrOototyPes in the wvisicn svstem’'s memory. If there are, tvre

X U.e00T, before executing this erosram, This is necessarvy
since this program wWill track any tarset placed in the camera’s
Fouy,

The Prgsram 1nstructs the visicon svstem to tale a picture and
prouide the x any v offcets of the centro:d of any tarsget
1 trwe camera’s FQOU.

Next a prosram entitied, center, is called. Center
Froerdes the rneccessary wvis:ig information tc provide the x and v

cent~n:d pcc2ticns For cerrectiogn to the robot’s Positian.

Trne 00 looe wi1ll repeat self until the tarset is centered i1n the
s FOL, ana the arm has storred,

7

camera
S EFEED 100
MCWwE #Fstart.eposition
PRzAX
CALL uv.imitelsion; 1nitialize communicaticn,
v.rttumbliob = 17 Bleb i1 wi1ill pe comPared to all prctotveres.

Crecx to made sure the pgali 15 1in the camera’s FQOU.

10 CALL uv.takte.Picture
iF s.olecz.county 0 ¢ THEN
TYRE /B, /CH
TYPE AR TR LY YRR PR PR LR EEEEEEEEEE LT R L

v\[fPE "o

*ll
TYRPE "= THE BAL. IN NOT IN THE CAMERA'S # "
TYRE "= FIELD CGF UIEW (FOW) *h
T\:/IDE ll* *ll

TYPE "Ru#ihstsntndptatdne st apagpntrpspaapagen’
TYRPE /2, /C1

TYPE *  ===z=z==z; PLEAGE POSITION THE BALL IN THE CAMERA'S FOV"
TYPE /B, /C1
PROMPT " ===z=z=" PRESS <RETURN: TO CONTINUE <=s==== "
G070 10
ELSE

HERE current; define current as Present locaticn.
2¢ DO
TIMER 1 = ¢
d.new.rPicture = 1
w.fFast = O
CALL u.where.are.vou.Proto; takKe Picture and set
7 Xy ¥ Centroids
TYPE "The time to set the vision info was", TIMER(1)., °
CALL center; This pProsram instructs the
vy robot to center the camera
over the tarsget.

[L]
[

UNTIL ball == 0O
GOTD 20
END
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.Pl center
. PROGRAM center

THIS PROGRAM CHECKS TO SEE IF THE CENTRCID OF THE
BAcLL IS IN THE CENTER OF THE CAMERA’S FQU.

~“~n wn e ve

ball = 1
xcen = s.K.scale#*s.xcenter.blobl]
vcen = -s.K.scale#s.vcenter.plobl]

TYPE "X POS IS ->»", xcen
TYRE "Y POS IS -3»", vcen

DADWRN—=DOMdOWN DLW

1 TYPE /C1
i I ((ARS(xcer) < 10) AND (ABS(vcen) <4 10Qj)) THEN
i ball = ¢
1 ELSE
: FOR 1 = 1 TO 10
! SET current = SHIFT(current BY xcen/i0G, vcen/13)
1C MOUE current
17 END
18 END
19 RETURN
LEND
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.Pl track.tara.scat
« PROGRAM tracK.tara.scat
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This Proaram exhibits the charateristics of a Static looK-and-

moue visual serup svstem durins

vision-robot svstem (LURS>») motion.

The Proaram instructs the uvision svstem to take a Picture and

frouide the X any vy aoffsets of the centroid of anv recosnized balls
in the camera‘s FOu.

Ovice tae ball hac been identified by the svstem Prosram, u.recosnize,
a prosram enti
provides the neccessary vision information to pPravide the x and v
centroird Positions for correction to the robot’s position.

2 POSition is
largser the ball, the closer the robot is to :ts desired obJective.

tled, center.scat, 1s called. Center.scat

determined by the size of the ball recosnized. The

The DO loop will! repeat itself until the ball is centered in the
camera’s FQOU.
abcuve the baill.

and the arm has stopped at a pPrecdetermined heisht

See the proe~am, search.track, for additional comments
pertaining to the seneral! use of this prosram.

=)

Creck

SPZED 10
MOVE #cet
EREAK

CALL u.1
d.rnumblo

tc make

CaLi u.t

IF s.blo
TYPE
TYPE
TYPE
TYPE
TYPE
TYPRE
TYPE
TYPE
TYPE
TYPE
PROM
GCTO

ELSE
HERE
TIME
Do

Q
art.pccsation

nituision, init

1alize communication.
b = 17 Blob 1 wili

he compared to all ergototvees.

eure the ball is 1n the camera’s FOU.

ake.pPicture
b.count + 1 THEN
/B, /C1
"*****#**%*%********%***%*********%******"
H* *ll
" THE BALL IN NOT IN THE CAMERA’S 3# "
"3 FIELD OF VIEK (FOW) #"
ll* *II
TR T T T E T T T TS S 4L E L L LS A
/8, /Ct
" ==-===>% PLEASE POSITION THE BALL IN THE CAMERA’S
/8, /Ct
PT » =====. PRESS <RETURN>» TD CONTINUE (s==== “
10

current; define current as epresent location.
R2=20
TIMER 1 = O
BREAK
d.new.picture = 1
u.fast = 0
CALL u.where.are.vou.pProto; take picture and set

i %, v centroids
CALL u.recosnize’ Identify the ball.
id = s.proto.id; which ball was identified.

141
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62
53
g4
65
GG
67
GB
69
70
71
72
73

74
75
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s wE wp we

TYPE
TYPE
TYPE
caLL

e ;_ L e e T R S A_qf',_:é ot e T

7B R RRRERRRRRRRRBRRRE R R RE RN RE RN RRE R ER RN NN
"The ball recognized is Prototvyere #", id

"The time to
center.scat:;

UNTIL ball == 0O
TYPE TIMER(2)

END
PROMPT ™
Go7TC 5
RETURN

- e e
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set the vision info wa-", TIMER(1), “ s¢
This Prosram instructs the

robot to move Closer and

centered on the ball.

=» PRESS <RETURN» TO RUN THE PROGRAM ABAIN {====="



Pl center.scat
. PROGRAM center.scat
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This proaram checks to see if the centroid of the ball is i1n
the center of the camera’s FQV. Also: derendins to which
froeotype wgs identified, the camera will move down in the
=2’ Jdirection an approeriate, predetermined, amount.

The X and v locations (s.xcenter.blobl] and S.vecenter.blobl(1])
Provided by u.where.are.vou.rroto are scaled by the scale
facter, s.K.scale. s.h.s5cale is determined when the prosram u.
u.K.teach is executed., See the Prosram, search.center, for a
further exeplaination of s.K.scale.

xcen and vcen are the resultant values when the x and vy locations
are scaled. It should be noted that vcen is the nesative value
of s,vcenter.blobll. This occure since the robot’s x,v frame is
different than the camera’s x.y frame.

It should alse be noted that, vcen, when scaled by s.K.scale

doec not Prouide accurate results. Throush expPerimentation it
was found that 1f vcen is multiplied by 2/3's, sood recults cccur.

The ball will be gconcidered ‘centered’ if the centroid is within
‘+ or =’ 10 mm,. nce the obdect is identified as a prototvre
areater than #B6. the reohot will not move anv closer to the ball.

The FOR lcop in this progsram hreats up the desired robot motion
into only 10 sters. This allows smpooth movement with minimal

cvershoct ¢f the target. As can be seen i the loorp. derendins
on whizcth ball i< identified, the arm will move down a desianated

amount. Since the pPrototvees were trained at 25 mm increments
the value of downward mouvements should be Factors of 2S.

EPEED 50 ALWAYS

bal: = 1
xcen = s.kK.scale#s.xcenter.bloblid]
veen = —~s.K.scale#s.vcenter.bioblidl

TYPE "X P0OS IS ->", xcen
TYPE "Y P0OS IS -»", vcen
TYPE "Bttt H 2 n RSB BB RN SRR DR A RN RSN, /1

<*
[$]

Chect see 1Ff the ball is centerea and close enoush to the ball.

IFf ((ABS(xcen) 7 10) AND (ABS(vcen) < 10) AND ((id < 1) OR (id >=
ball = 0
ELSE
FOR i = 1 TO 10 :
CASE INT(id) OF
UALUE O, 91
zoom = O
VALUE ., 2, 3¢
zoom = =150
VALUE 4
zoom = =73
VALUE S, 7%
zoom = =50
JALUE 6, B1:
zoom = -2
END
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The next IF statement accounts for the initial offset between the

Position of the camera mount with resepect to the PUMA end effector.

See search.center for

IF ((id
SET
ELSE
SET
END
END
MOVE current
END
RETURN

an explanation,

<> 0) AND
gurrent =

current =

144

(id < 4)) THEN
SHIFT(current BY xcen/190.

SHIFT(current BY xcen/10,

veen/1543.5, :

veen/13,

zo00m/



+Pl search
-PROGRAM search

i ’ Thx§ pProsram will so throuah a “square conical” search
< fsozns from the laraest rpossible area, to the smallest)
< ? i in an attemrt to acAuire a tarset (ball) in the search area.
r
3 7 Once the ball has been acauired by the vision Svstem.
6 7 a eprosram entitled, search.track, is called. This
7 7 preosram will instruct the robot to center the ball in the
€ ¢ camera’s FOV and lower the camera closer ta the ball.
g s '
10 7 If the ball is not acauired durina the fFirst search, the
11 7 search will be accomplished over and over, until a ball is
12 7 placed in the search area, or the user terminates the eprosram.
13
14 ; Once the ball has been aacuired, the svystem will g0 into a
15 7 continuous "trackina" mode. In this mode, the user can mcve
16 7 the btall anvwhere in the camera’s FDV, and the robot/vision
17 7 svstem will track the ball (the robzct will not move claser to
18 7 the tall, Juct track it).
12
20 7 If the ball is removed ccmeletely from the camera‘s FOU, the
21 7 search will start cver from the besinning., The search’s
22 7 startine pcint, #search.start, ic defined as a VWAL Il precision
22 7 {refer to a WAL I User’s Guice for a definition gf precision ePoint).
24 ;
25 TIMER 13 = 0O
2€ SC  EFEED 100
27 MOYE #cearch,.,sta~t; This 1s the predifineg starting pPcoine
g ;
28 count = 0O; Inmitialize counter used to instruct the
30 ;7 proaram to accomplish tracKing onlv.
31 m = Q; Initialize counter for square conical search.
32 BREAXK 7 Next command waits until robot mation stoes,
33 CPZED SO  ALWAYS
34 S m = m=+!
35 CALL u.initvision; Initialize vision/rcbot communication
36 d.niumblecd = 1; Blob 1 will be compared to all prototyvres.
37
38 HERE start
39 CRLL u.take.picture; Svstem pProsram which checks for blobs.
40 ;
41 ; The following IF-THEN-ELSE is used to conduct the sauare search
42 7 and aqcuisition of the ball.
43 ;
44 ;- The search will continue until, u.taKe.picture, finds a blob
45 7 with an area sreater than the minimum blob pPixels (set by user)
46 7 in the camera’‘s FQU,
47 3
4L IF s.blob.count < 1 THEN
49 CASE INT(m) OF
S0 VALUE 1. 2, 3, 12, 13:
51 MOVE SHIFT(start BY 80)
52 VALUE 4, S, 6, 14.
53 MOVE SHIFT(start BY , B5)
4 VALUE 7, B, 9, 15¢
S5 MOVE SHIFT(start BY -80)
56 VALUE 10, 11, 16:
S7 MOVE SHIFT(start BY ,» =-85)
se 7
58 145
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62

63
g4 ;
65 ANY
25 TYPE /B
.q; TYPE :SEARCH HAS BEEN COMPLETED. THE BALL WAE"
g TfPE "NDT IN THE SEARCH AREA."., /Ci
<20 s TYPE "THE SEARCH WILL NOW REPEAT ITSELF.", /B
;i TYPE "“PLEASE PLACE THE BALL IN THE SEARCH AREA."
2 TYPE "OR TERMINATE THE PROGRAM BY TYPING.,", /C1
;2 : TYPE " ‘A’ FOLLOWING BY PRESSING THE <RETURN: KEY", /C1
73 DELAY 2; Delavy prosram execution by 2 seconds.
76 GOTO SO
77 END
78 BREAK
78 ELSE
80
gr 7 The foliowine DD loor will continue foreuer, unless the user
82 | wishes teo terminate. Th terminate Proaram execution pPress
83 ¢ "A" fFollowed by <RETURNC.
84 ;
85 : If the bal! is removed from the camera’s FOU, The search will
86 5 start over., :
87 .
88 no
89 caLt cearch.track
a0 IF lost 4 @ THEN
91 TvpE /8, “THE PALL HAS BEEN ACQUIRED", /€3
az TYPE /B, "TC STOP THIS PROGRAMIY., /C1
a3l TYPE " TYPE ‘A’ FOLLOWED BY PRESSING THE "
14 TYPE ¢ {RETURN>» KEY.", /C1
as END
9
Q7 count = 157 Reset counterT. This is to prevent
a8 :* the robot from movina closer to the
ge * pall. However trackins can still be
100 ' accomelished.
101 CALL u.take.piuture; Check to see if ball is
102 i is still im the camera’s Fou.,
102 uUnTIL s.bloc.count == 0O
104 3
105 TYPE /C1i. "****¢*****¢**********************************"
106 . TYPE "* *
107 TYPE "=# THE PALL HAS BEEN REMOVED FROM z"
108 TYPE “# THE CAMERA’S FOV, THE SEARCH WILL *"
108 TYPE " REPEAT UNTIL THE BALL IS REACQRUIRED "
110 TYPE "=* . #"
111 TYPE “**************%**&*%*****%*******************“, /C2
112 3
113 GOTO SO
114 END
115 GOTO S
.END
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+Pl search.track
«PROGRAM search.track
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Thi
and
bal

Onc
U-Y‘

s frosram instructs the vision system to taKe a pPicture
s:ye the x and v offsets of the centroid of anvy recosnized
ls in the camera‘’s FOU.

e the ball has been identified by the system erasram,
ecoanize, a Pprosram entitled, search.center, is called.

Search.center Provides the necessary vision information

1 )
the

provide the x and ¥ centroid posivions for correction to
robhot’s Pposition,

2 pocition 15 determined by the size of the ball recosnized.

The
obuJ

The
the
hei

NOT
bal

larser the ball, the closer the robot is to its desired
ective,

DO loor will rereat itself until the ball is centered in
camera‘s FOU, and the arm has storped at a pPredetermined
sht above the rall.

g The reason the robot is not lowered all the wav to the
1 15 tmwat if the ball encompasses a maJoritr of the camera’s

FOV, the centrcid Pposition can not be calculated accurately, and

the
ext

NOT
ahe
audl

robo</uision system will ocvershoot back and forth for an
ernged pericd of time.

£: The different ball sizes are trained to the visicn system
ad of time. Usina a tall alleviates the problem of not havina an
cfocus camera lens. Ewven thouah the ball gets blurry as the

camera aets closer, it will still remain circular in the camera’‘s

2-4d
Tra
1)

-
2}

3)

To
int

imensional FOW. L.train.blob was used to train the vision system.
ining cccurs as follows.:
The user defines a startins pcsition (the one used here is
decignated as the fFollowing presion epoint, #start.position).
u.train.biok 1s calliecd, the fFirst obJect trained will be
dezignated as pPrototvyepe ‘17,
Once training has been accomrplished, the user should verify
the training was succesful. This is accaomplished by usins
the lisht pen to select the o PROTOTYPE MENU. and then
checkinag the o DISPLAY DISCRIMATION MATRIX. There should be
a large blocKk next to the CURRENT SET row. If not, the ball
should be retrained,.
mare life easier., the balls have pbeen already trained at 25 mm
ervals and stored on tare. The tare is entitled ‘VISION SERVO

L.CONTROL TARGETS'. These can be loaded directly, without any additional

training.

Thne timer is used to delay proeram execution of the Proaram
and diserlay the amount of time reauired For the vision system

10
rob

Sin

process the imase and send the reauired data back to the
. Processor.

ce this particular erogram is workina as a Static look-and-

move svstem:, the delavy is required to ensure the robot has
storPed moving before the next picture is taken. The reason for

thi
bal

§ is7 if the vision system takKes a picture in-between trained
1 sizes, the picture taken will not be an identifiable obdect.

(The area of the ball will not match any area trained earlier)
Thas the vision system Wwill not Know how far down to move the arm.
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SPEED 25
HERE current: Define current as eresent location.

The followins 2 parameters initialized are used incase the vision

svstem sets lost, ie. it thinKks it has the ball in its FOVU, but
in reality it doesn’t.

xcen = Q
xcenl = 1

Do

UNT ==
TYPE “"TIME I8 ", TIMER(i1)

CALL u.initvision: Initialize communication.
TIMER L = 0O
BEREAK
y.new,.,pPicture = 1
u.fast = 0
CALL u.where.are.vou.pProto: take pPicture and set
r Xr v Centroids

CALL u.recosnize: lIdentify the ball.
id = s,proto.id; This comes form u.recosnize.

! It identifies which ball was identified.

TYPE /B, Tpapgppppe R R e e R TR T T LY TR LT L L L L S L L L
TYPE "The ball recosnized is prototvee #", id
TYPE "The time to set the vision info was", TIMER(Y1), /C1i

AL search.center; This program instructs the robot
to move clecser and centered an the ball.

Lo bali 8]

RETURN
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Pl search.center
-PROGRAM search.center

61

i 7
‘ 2 5 Thx; proaram checks to see if the centroid of the ball
i 3 7 is in the center of the camera’s FOU. Also. derendina on
L 4 7 which prototvyre was identified, the camera will move down
g E in the ‘-z’ direction an appropPriate, predetermined, amount.
- Fl
7 7 The x and v locations (s.xcenter.blobf{] and s.vcenter.blob(])
8 7 Provided b¥ u.where.are.vou.Proto are scaled by the scale
9 ¢ factor, s.K.scale. s.K.scale is determined when the program
10 7 u.K.teach is executed. It is imPortant to set an accurate scale
11 ¢ factor, with the camera mounted to the robot. The followina
2 7 should be accomplished to ensure this.
13 1) Put the arm in the startine position (#start.pcsition).
14 3 2 Execute u.K.teach, make sure the disk will be in the camera’s
15 3 FOU when the robot is moved out of the wav.
16 5 The value cf s.k.scale should be arproximatelv .S,
17
18 : xcen ana vcen are the resultant values when the x and v locations
19 ;7 are scaled. It should be noted that vcen is the nesatvive value
Z0 5 of s.vcanter.blobfl. This occurs since the robot’s x,v frame is
21 ; different than the camera’s x,y frame.
22 7 It should also be noted that, vcen, when scaled b
23 ;| s.t.ccale do2s nct provide accurate results. Throush experimentation
24 ; it was foundg that if vcen is multieplied by 2/3‘s, sood results occour,
25 3
2C : The ball will be concidered centered if the centroid 1s within ‘+ or -°
27 ¢ 10 mm. Dnce the obJect is identified as a prototvee 9
28 the robot will not move anvy closer to the ball.
a 3
20 3 The FOR lpoop 15 used to break ue the robot motion into 10 steps.
31  This allows cmcoth movement with minimal overshoot of the tarset.
32 ; As can be seen irn the loop, derpendine con which ball identified.
33 ; the arm wil. move down a Jdesiesnated amount. Since the Pprototvres
24 ! were trained at 25 mm increments:. the value of downward mguements
25 7 chouid be facrore of 25,
3€
37 CPEED SO ALKWAYE
3e lpst = 1
39 bali =1
aQ xcen = s.K.scale#s.xcenter.blobligl
41 veen = -s,.K.scale#s.vcenter.bloblid]
2 TYPE "The ball’s centroid in the ‘X’ direction is", xcen
43 TYPE "The ball‘s centroid in the ‘Y’ direction is", vcen
44 TYPS "SAHRBBFRRRARARRFRARBRRRRIFFRARLARERSRFARRRR SRR RN, /O]
45 3,
46 7 ChecK to see if the vision svstem is huns. .
47 ;
48 IF xcen == xcenl THEN
49 TYPE /C1, "HERBARRERBRERRFRRRERTHEERHRARRRRRBEHRERR"
SO TYPE "# a"
o1 TYPE "# THE BALL HAS BEEN LOST *"
2 TYPE "# *"
53 TYPE "S#EZXRRBRRIBARRERAXRRARFRERRRREERRRRRRRRR", /C2
=4 lost = O
S ball = O
S6 ELSE
57 1
58 7 ChecK to see if the ball is centered and close enoush to the ball.
59 »
60 149
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IF (;A??(xc;n) < 10) AND (ABS(vcen) < 10) AND (id > 8)) THEN
& x .

ELSE
count = gcount+{
FOR 1 = 1 TD 10
CASE INT(id) OF
VALUE ©:

The Followins IF statemenrt is to account For the situation when
the ball’s initial eosition in the search area is at a distance
greater than that traived to the vision svstem. The search area
1; such that at no Point in search area will the ball be at a
distance sreater than 75 mm from an initial trainins position.

IF count <= 4 THEN
zoom = =25,
ELSE
2oom = O

END
yeLdye 1, 2, 38
zoom = ~-150Q
VALUE 4.
zoom = =75
VALUE 5, 7.
2o00m = =50
VALUE G, .
zoom = ~2%5
UALUE 912
Zoom = O
END

The following IF statement is used orce the ball has been

acauired and zoomed into. The vision/robot system will Just

become a tractor. Thig is a safety measure, because in the

trackins mode, if only part of the ball is in the camera’s

FOU when a picture 15 taken, the eprototyre identified migaht not

be what the actual erototvepe is. For example, if the blob identified
Wwas rncw PrototvrPe #1, the robot would think that it should lower
itself 150 mm, thus puttins itself out of its possible ranse of
motion.

IF count > B THEN
SET current = SHIFT(current BY xcens:<, vcen/295)
IF ((ARS(xcen) < 10) AND (ABS(rvcen) < 10)) TKEN
ball = 0
END
GOTO 25 .
END

The next IF statement accounts for the initial offset between
the position of the camera mount with respect to the PUMA

end effector. This is a problem because xr,y,2 coordinates in
the VAL II controller are based on the location of Joint 6.
not Joint 3 (where the camera is presently mounted).
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129
130
131
132
133
134
-* 38

37
138
139
140
141
142
143
144
145
148
147
148
145
150
151
is2
153
154

.END

-

~e

i T i i o3 B e ar S i

g Vet

IF ((id <> 0) AND (id < 3)) THEN

IF m == 2 THEN
SET current
END
IF ((m == 3) OR
SET current
ELSE
SET current
END

ELSE
IF ig 3 THEN
SET current
ELSE
SET
END
END
MOUVE current
END
END
END
xcenl =

-
o=

current

B
LK}

xcen:, This cets

! the vision svetem had the ball,

RETURN
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= SHIFT(current

{m == 4)) THEN
= SHIFT(current

SHIFT(current

SHIFT(current

SHIFT(current

BY

BY

BY

BY

BY

Keen/10+1, vcen)

xeen/10+2, vcen)

xcen/10, vcen/1)

xcen/10, vcen/1)}

xcen/10, vcen/1)

up the check for the situation where
then lost

it.



Task 2:

Dynamic Visual Servo Control Program Listings

152




«+P]1 track.tara.dcat
+PROGRAM track.tars.dcat

SOUOoONOd W -

*
»
L]
T
-
4
[
r
.
r
»
¥
»
r
.
¥
»
r
.
1
-
1
.
1
.
?
.
L
.
1
-
+
.
L
[l
*
.
]
-
r
.
r
.
14
.
’
.
7
.
'

- wa %

" we we

:his Program exhibits the charateristics of a Dvrnamic look-and-
9 ) 1
tove visual servp svetem when the arm moves in a downward direction.

The remainins @ouemenzs are done in the more classical Static look-
and-move servoing method,

The prosram instructs the vision srystem to take & eicture and

?rouzde the x any ¥ offsets of the centroid of anv recognized balls
in the camera’s FOU.

Onze the ball has been identifiea by the system Pprosram., u.reco@anize.
a eroaeram entitled, center.dcat., is called. Center.dcat
provide: the neccessary vision information to provide the X and v
centroid Positions for correction to the robut’s psgiticn.
2 pesition i1s determined by the size of the ball recoaenized., The
ijargser the ball, the claoser the robhot is to its gesired obdective.

The DO lcar will rerpeat itself until the ball is centered in the
camera‘s FOU, and the arm has stoppad at a predetermined heisht
atove the ball,

See the eroaran, search.hall.track, for additional comments
pertaining 1o the sereral use of tnis proaram.

= GPREED 100
MOVE #3tartv.pocition
PREAK
CALL uw.initvisian: snitialize communlcation.
w.numbled = 17 Bleb 1 Wwill be comeared to all erototvrPes.

Chec: to mate sure the ball 1s 1im the camera’s FOUV.

{0 CA_L u.tahke.pPlotlure
If s.blon.count < 1 THEN
TYPE /B, /Ci
TYPE "****%*§****************Q***************%“

T\.IPE Il* *ll
TYPE "# THE BALL IN NOT IN THE CAMERA’S  *"
TYPE "3 FIELD OF VIEW (FDW) 2"
TYPE “# %

TYPE “*#**&*******4%*************&************"
TYPE /8, /C1

Typg v ======)» PLEASE POSITION THE BALL IN THE CAMERA‘S FOU"
TYPE /B, /C1
PROMPT @ ===== PRESS CRETURNS TO CONTINUE <===== “
GOTG 10
ELSE

HERE current: define current as pPresent iocatiaon.
TIMER 2 = 0
DO
TIMER 1 = O
d.new.picture = 1
u.fast = O
caLt u.uhere.are.vou.onto: take picture and gset
* %y, vy centroids
CALL u.recoanize: Identify the ball.
id = s,proto.id?} which ball was identified.
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62
63
G4
B85
66
67
~B

70
71
72
73
74
75
76
77
78
+END

“a wE NN ws we

TYPE
TYPE
TYPE
cALL

/B, "********%*QI'i**‘l'*'l**-l%**ﬁ*%!*ii**#*.&**{ﬁ&*lii&i"
“"The ball recosnized is prototyre #", id

"The time to
center.decat-s

- we

UNTIL ball == 0
TYPE TIMER(Z)

END

PROMPT “==z=z==

GGTO S
RETURN

get the vision info wae", TIMER(1), * sel
This prosram instructs the

robot to mowve closev and

centered on the ball.

z» PRESS <RETURN> TO RUN THE PROGRAM AGAIN {z=sz=ze”
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-Fl center.dcas

« PROGRAM center.,.dcat

SO NEA D ) e

[ S

[
»

r-3

(R
B W

-
N

!

[
G3

17
18
18
20
21
‘_'!"I
2z
s
e ad
24
ne
—
g
e ek

-
<

0

P

30

4

-

29

[ SN

33
34
35
36
37
38
39
44

B Ml ME wE A wp e WE MY NE WE UR Wh M4 ws MA NA UK Wy NE NE NE Ve Wy we mp WS WA WP NS WS ws g e

“a wu ww

This eproaram ch ]
g ecks to see i1f the centr
0
the center of the Camera’s FGQU. cremiirnt ol

Prototvree was identified.,

’

’ 15 1n
i Also, derendina to which
‘ the camera will move 4

‘ , ; own 1n the
direction an arPropPriate, predetermined, amount.

T a g 1
p:guxdwnd ¥y locations (s.xcenter.bloblfl and fS.7center.blobdbl))
, tz ed by U.where.are.vou.rroto are scaled by the scale

ctor, s.kK.scale. S.h.5cale is determined whern the erogram u.

ﬁ.h.teach is gxecqted. See the erogaram, search.center, for a
urther exelaination of s.Ka.scale.

Ncen and vcen are the resultant values when the x and v locations
are scalea, It should be noted that vecen 1¢ the neaative ualueN
of s.vcenter.blobl3. This occurs cince the rodbot’s x,y frame ic
d1fferent than the camera’s x,y frame. ' )
It should alec be noted that. vcen: when scaied by s.h.scale

doec not provide accurate results. Throuch exPerimentation 1t

was fournd that if vecen i¢ multiplied by 2/3°c, 8004 results occur.

The ball w:ill be cansidered ‘centered’ if the centrold 1¢ within
‘+ o1 =7 10 mum, Ovice the obuect 1c identified as a prototvere
sreater than #8. the robct will rnot move anv cioser to the bhall.

Tre FOR locr in this proaram breax: up the dezired robot mation
into on:, 2 sters. Thie 12 what allows the dvynamic lopr—-and-moue
wisywal tpeachiing to ccoccocur, As the arm 15 movina down, a fPicture 1s
taven a< soen as poscible in program executian. The commands are
cerial, ~ut a form of eparalle. orPeration is Possible because once
tre MOUE commawn 18 executed tne next commands are addressed,
Tnerefore a picture 16 reauected while the arm 1s moving form 1ts
lact MOVE ccocmmanc. See search.center for information fPertairing to
tre valcees for dowrward movement.

SPEED 28  ALWAYS

ball = 1

xcen s.t.scale#s.xcenter.0iobfi1d]
vcen = -¢,b.scale#s.vcenter.blobfdl
YPE "M PLS IS ~»", xcen

TVPE "y PGS IS -»", vcen

TYPE "##4#4BR IR ARBHEARFBXEHFLBAABIRRAABABIARSI AR RFRERRY, 1

ES

Cneck to see if the ball is centered and close enoush to the ball.

IF ((ABS(xcen) < 10} AND (ABS(vcen) < 10} AND ((id < 1) OR (id =~

pball = O
ELSE
FOR i = 1 TO 2
CASE INT(id) QOF
YALUE O:
zoom = O
VALUE 1, 2, 3%
zoom = ~150
VALUE 4, S, B:
zoom = =50
VALUE 7, 8, 9.
zoom = 0

END
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€3
64
65
66
67
38
49
70
71
72
73
74
75
76
77
78
79
B8O
B1
B2
.END

ws WG N6 WE wE We wWe w@y °

The next IF statement accounts For the initial offset between the

position of the camera mount with respect to the PUMA

See search.center for an explanation,

END
ExD
RETURN

I ((id <> O) AND (id < 4)) THEN

SET current = SHIFT{current BY xcen/2.

ELSE

IF id == 4 THEN
SET current

ELSE

SET current

END
END
MOWE current
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SHIFT(current BY xcen/2.

SHIFT(current BY xcen/2,

end effector,

vycen/4+2%,

zoom)

vyeen/4-1%5, )

veen/4,

z200)



Appendix C

User's Manual

Appendix C contains the User’s Manual for setting up
this particular vision-robot system (VSR) for the various
tasks accomplished in my thesis. The Manual provides step-
ﬁ by-step instructions to enable the user to execute the

various programs.
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Step

Directions for Operating VRS

Direction

=z==z>» NOTE <(===

It is assumed that the user has read the following
references --> (16; 17; 18), before using the VRS.

Mount the camera to the camera stand, with the
camera pointing towards the black part of the
table, when looking at the image through the
camera.

Load the vision system's operating software by
inserting the Univision S/W tape into the "TAPE 0"
slot located on the right side of the vision
system’'s video monitor. Depress the
"RESTART/RELOAD" button (a blue light should be
visible).

Turn the key to the "ON” position. The LED by the
tape drive will flash while the system is loading.

===> NOTE (===
It takes approximately 5 minutes to load the

svstem. Therefore, the user may accomplish Steps
16-26 to bring up the robot, while loading occurs.

A correct load will results when the Machine
Intelligence Univision (3.09-B) logo is displayed.
Remove the tape from the drive.

Press the light pen to any white part of the
screen.

z=zz=> NOTE <(===z
The following steps set up the vision system for
Subtask 1. For setting up the vision system for
the remaining Subtasks and Tasks accomplish Steps
15.
Select: o SYSTEM SETUP
o VIEW CURRENT CAMERA

Place the calibration disk in the camera’s field of
view (FOV).
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v

10.

11.

Focus the camera and adjust the aperture to get as
clear an image as possible.

Press the light pen to any part of the screen and
then select the following:

o SET THRESHOLD

Set the threshold value to 128 by pressing the
light pen to an arrow until 128 shows up in the
upper right corner of the monitor.

128 provides the best contrast when using white
objects against a black background.

Select: o QUIT
o OPERATING OPTIONS
Ensure "ONLY" the following options are "ON".

CONNECTIVITY ANALYSIS
FIRST MOMENTS

KEEP ALL BLOBS

NOISE SUPPRESSION
OUTLINE BLOBS
PERIMETERS
RECOGNITION

SECOND MOMENTS

00 0QC00O0O0

Select: o QUIT
o QUIT
o EXPERT OPERATION
0 OPERATING OPTIONS

In addition to the options listed in Step 10,
ensure "ONLY" the following options are "ON".

o OBJECTS ONLY PROCESSED
o PROCESS ALL BLOBS

===z> NOTE (===

Other options are possible, refer to (17} for more
information.
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12.

13.

14.

15.

16.
1 17.

18.

19.

! 20.

21.

22.

Select: o QUIT

o QUIT

o UNIVISION

o VIEW CURRENT CAMERA
READY TO GO !'!!!!!

Ensure the robot (operating under VAL I1) is up and
running. If not, accomplish Steps 16-26.

ONLY the following options from the various
OPERATING OPTIONS should be selected when
accomplishing Subtasks 2, 3, 4 and Task 2.

CONNECTIVITY ANALYSIS
FIRST MOMENTS

NOISE SUPPRESSION
OBJECTS ONLY PROCESSED

0O o000

===> NOTE (===

The following steps will setup the PUMA 560 under the VAL 11
operating system.

Turn of the robot's dumb terminal.
Turn the power "ON" the Unimate Computer/Controller.

A message should appear asking the user to load VAL II
from floppy disk.

Insert the 5 & 1/4" floppy disk entitled "VAL 11
560.1.4.B" into the Unimate disk drive.

Type "Y <RETURN>" to the prompt asking the user to load
VAL IT1.

Enter the number "798" for the robot serial number.
Approximately 2 minutes later, type "Y <RETURN>" to the

prompt asking the user to INITIALIZE the system. A "."
system prompt will appear.
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23.

26.

28.

=z==> NOTE <===

Initializing the system has the effect of erasing all
programs stored in memory. Therefore, ensure a copy of
all software is stored on disk.

Remove the Unimation disk and insert the Univision I
system program disk 935H3 which contains the interface
software.

Enter the following:
==> LOAD UNIVISIONI1.PG

11 s.%¥.% files and 15 u.*x.%¥ files should be loaded and
displayed.

Remove the Univision disk and insert the Vision Servo
Control disk into the Unimate disk drive.

Enter the following:
==> LOAD VISION.SERVO.CONTROL
The 19 programs listed in Appendix B should be loaded.
To execute Subtask 1, type the following:
EX VISION.DEMO

and accomplish the OPTIONS in order to initialize
communications, calibrate the systems, train targets,
and execute open loop, static look-and-move control.

For the remaining Subtasks and Task, the camera must be
mounted on the third joint of the PUMA 560 (see Figure
10 in Chapter 1I1) and the table removed from the robot
workspace. Put the black part of the table on the
floor for a work area. The vision system must also be
re-calibrated by executing the following self-
explanatory program:

EX U.K.TEACH

»

which determines the camera scale factor (s.lL.scale
should be approximately equal to 0.5).
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29.

30.

32.

33.

To execute Subtask 2, delete all prototypes from the
vision system's memory by typing the following:

EX U.BOOT
Next place a target under the camera's FOV. The system
is ready for closed loop, static look-and-move visual
servo control. Enter the following:

EX TRACK.TARG
Before executing Subtask 3, the trained targets must be
loaded into the vision system’s memory. This is
accomplished by inserting the vision cassette, labeled
"V'ISTON SERVO CONTROL TARGETS", into the vision
system’s "Tape 0" slot. Next select the following
with the light pen:

o PROTOTYPE MENU
o LOAD ALL PROTOTYPES FROM MEMORY

The system should now be ready. Place the white ball
below the camera and enter the following:

EX TRACK.TARG.SCAT

To execute Subtask 4, simply place the ball anywhere on
the black background and enter the following:

EX SEARCH
Finally, to execute Task 2, closed loop, dynamic look-
and-move visual servo control, place the target near
the center of the camera’'s FOV and enter the following:

EX TRACK.TARG.DCAT

When finished for the day, follow the manuals for
shutting the systems down.
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